These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24514740)

  • 1. High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices.
    Gruhler N; Benz C; Jang H; Ahn JH; Danneau R; Pernice WH
    Opt Express; 2013 Dec; 21(25):31678-89. PubMed ID: 24514740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High performance nanophotonic circuits based on partially buried horizontal slot waveguides.
    Xiong C; Pernice WH; Li M; Tang HX
    Opt Express; 2010 Sep; 18(20):20690-8. PubMed ID: 20940965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler.
    Hosseinnia AH; Atabaki AH; Eftekhar AA; Adibi A
    Opt Express; 2015 Nov; 23(23):30297-307. PubMed ID: 26698509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.
    Yu L; Zheng J; Xu Y; Dai D; He S
    ACS Nano; 2014 Nov; 8(11):11386-93. PubMed ID: 25372937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband directional coupling in aluminum nitride nanophotonic circuits.
    Stegmaier M; Pernice WH
    Opt Express; 2013 Mar; 21(6):7304-15. PubMed ID: 23546114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waferscale nanophotonic circuits made from diamond-on-insulator substrates.
    Rath P; Gruhler N; Khasminskaya S; Nebel C; Wild C; Pernice WH
    Opt Express; 2013 May; 21(9):11031-6. PubMed ID: 23669959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nanophotonic devices for chip-scale optical communication applications [Invited].
    Fainman Y; Nezhad MP; Tan DT; Ikeda K; Bondarenko O; Grieco A
    Appl Opt; 2013 Feb; 52(4):613-24. PubMed ID: 23385898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based photonic devices for soft hybrid optoelectronic systems.
    Kim JT; Kim J; Choi H; Choi CG; Choi SY
    Nanotechnology; 2012 Aug; 23(34):344005. PubMed ID: 22885955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers.
    Jeong SH; Tanaka S; Akiyama T; Sekiguchi S; Tanaka Y; Morito K
    Opt Express; 2012 Nov; 20(23):26000-11. PubMed ID: 23187415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diamond-integrated optomechanical circuits.
    Rath P; Khasminskaya S; Nebel C; Wild C; Pernice WH
    Nat Commun; 2013; 4():1690. PubMed ID: 23575694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic printed photonics: From microring lasers to integrated circuits.
    Zhang C; Zou CL; Zhao Y; Dong CH; Wei C; Wang H; Liu Y; Guo GC; Yao J; Zhao YS
    Sci Adv; 2015 Sep; 1(8):e1500257. PubMed ID: 26601256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly efficient thermo-optic microring modulator assisted by graphene.
    Gan S; Cheng C; Zhan Y; Huang B; Gan X; Li S; Lin S; Li X; Zhao J; Chen H; Bao Q
    Nanoscale; 2015 Dec; 7(47):20249-55. PubMed ID: 26581024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.
    Kim G; Park JW; Kim IG; Kim S; Kim S; Lee JM; Park GS; Joo J; Jang KS; Oh JH; Kim SA; Kim JH; Lee JY; Park JM; Kim DW; Jeong DK; Hwang MS; Kim JK; Park KS; Chi HK; Kim HC; Kim DW; Cho MH
    Opt Express; 2011 Dec; 19(27):26936-47. PubMed ID: 22274277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodetectors integrating waveguides and semiconductor materials.
    Wang XX; Zeng G; Yu QJ; Shen L; Shi CY; Lu HL
    Nanoscale; 2024 Mar; 16(11):5504-5520. PubMed ID: 38410877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous lithium niobate photonics on silicon substrates.
    Rabiei P; Ma J; Khan S; Chiles J; Fathpour S
    Opt Express; 2013 Oct; 21(21):25573-81. PubMed ID: 24150397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices.
    Davanco M; Liu J; Sapienza L; Zhang CZ; De Miranda Cardoso JV; Verma V; Mirin R; Nam SW; Liu L; Srinivasan K
    Nat Commun; 2017 Oct; 8(1):889. PubMed ID: 29026109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveguide-integrated light-emitting carbon nanotubes.
    Khasminskaya S; Pyatkov F; Flavel BS; Pernice WH; Krupke R
    Adv Mater; 2014 Jun; 26(21):3465-72. PubMed ID: 24643956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circuit optomechanics: concepts and materials.
    Pernice WH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1889-98. PubMed ID: 25389167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip photonic memory elements employing phase-change materials.
    Rios C; Hosseini P; Wright CD; Bhaskaran H; Pernice WH
    Adv Mater; 2014 Mar; 26(9):1372-7. PubMed ID: 24293359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.