These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24514921)

  • 1. The influence of silver core position on enhanced photon absorption of single nanowire α-Si solar cells.
    Shi L; Zhou Z; Huang Z
    Opt Express; 2013 Nov; 21 Suppl 6():A1007-17. PubMed ID: 24514921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core.
    Zhan Y; Zhao J; Zhou C; Alemayehu M; Li Y; Li Y
    Opt Express; 2012 May; 20(10):11506-16. PubMed ID: 22565770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laterally assembled nanowires for ultrathin broadband solar absorbers.
    Song KD; Kempa TJ; Park HG; Kim SK
    Opt Express; 2014 May; 22 Suppl 3():A992-A1000. PubMed ID: 24922405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of μc-Si:H/a-Si:H coaxial tandem single-nanowire solar cells considering photocurrent matching.
    Cao G; Li X; Zhan Y; Wu S; Shang A; Zhang C; Yang Z; Zhai X
    Opt Express; 2014 Dec; 22 Suppl 7():A1761-7. PubMed ID: 25607490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.
    Yun J; Kim J; Kojori HS; Kim SJ; Tong C; Anderson WA
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5547-51. PubMed ID: 23882792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.
    Tsai SH; Chang HC; Wang HH; Chen SY; Lin CA; Chen SA; Chueh YL; He JH
    ACS Nano; 2011 Dec; 5(12):9501-10. PubMed ID: 22034901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon.
    Shahriar Sabuktagin M; Syifa Hamdan K
    R Soc Open Sci; 2020 Jul; 7(7):191926. PubMed ID: 32874602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells.
    Wang B; Stevens E; Leu PW
    Opt Express; 2014 Mar; 22 Suppl 2():A386-95. PubMed ID: 24922248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells.
    Law M; Greene LE; Radenovic A; Kuykendall T; Liphardt J; Yang P
    J Phys Chem B; 2006 Nov; 110(45):22652-63. PubMed ID: 17092013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible to near-infrared light harvesting in Ag2S nanoparticles/ZnO nanowire array photoanodes.
    Wu JJ; Chang RC; Chen DW; Wu CT
    Nanoscale; 2012 Feb; 4(4):1368-72. PubMed ID: 22278401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photoabsorption in front-tapered single-nanowire solar cells.
    Zhan Y; Li X; Wu S; Li K; Yang Z; Shang A
    Opt Lett; 2014 Oct; 39(19):5756-9. PubMed ID: 25360977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light absorption and emission in nanowire array solar cells.
    Kupec J; Stoop RL; Witzigmann B
    Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity.
    Gai F; Zhang C; Zhan Y; Li X
    Opt Express; 2016 Dec; 24(26):A1505-A1513. PubMed ID: 28059281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high efficiency dual-junction solar cell implemented as a nanowire array.
    Yu S; Witzigmann B
    Opt Express; 2013 Jan; 21 Suppl 1():A167-72. PubMed ID: 23389268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc oxide nanowire arrays for silicon core/shell solar cells.
    Tamang A; Pathirane M; Parsons R; Schwarz MM; Iheanacho B; Jovanov V; Wagner V; Wong WS; Knipp D
    Opt Express; 2014 May; 22 Suppl 3():A622-32. PubMed ID: 24922370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical consideration of III-V nanowire/Si triple-junction solar cells.
    Wen L; Li X; Zhao Z; Bu S; Zeng X; Huang JH; Wang Y
    Nanotechnology; 2012 Dec; 23(50):505202. PubMed ID: 23182996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Photoelectrical Response of Hydrogenated Amorphous Silicon Single-Nanowire Solar Cells by Front-Opening Crescent Design.
    Yang Z; Cao G; Shang A; Lei DY; Zhang C; Gao P; Ye J; Li X
    Nanoscale Res Lett; 2016 Dec; 11(1):233. PubMed ID: 27129685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.