These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24515032)

  • 1. Fractional Fourier processing of quantum light.
    Sun Y; Tao R; Zhang X
    Opt Express; 2014 Jan; 22(1):727-36. PubMed ID: 24515032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of optical 'Schrödinger cats' from photon number states.
    Ourjoumtsev A; Jeong H; Tualle-Brouri R; Grangier P
    Nature; 2007 Aug; 448(7155):784-6. PubMed ID: 17700695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered optical nonlinearity for quantum light sources.
    Brańczyk AM; Fedrizzi A; Stace TM; Ralph TC; White AG
    Opt Express; 2011 Jan; 19(1):55-65. PubMed ID: 21263542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of quantum and classical discrete fractional Fourier transforms.
    Weimann S; Perez-Leija A; Lebugle M; Keil R; Tichy M; Gräfe M; Heilmann R; Nolte S; Moya-Cessa H; Weihs G; Christodoulides DN; Szameit A
    Nat Commun; 2016 Mar; 7():11027. PubMed ID: 27006089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulated emission of polarization-entangled photons.
    Lamas-Linares A; Howell JC; Bouwmeester D
    Nature; 2001 Aug; 412(6850):887-90. PubMed ID: 11528472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display.
    Mendlovic D; Dorsch RG; Lohmann AW; Zalevsky Z; Ferreira C
    Appl Opt; 1996 Jul; 35(20):3925-9. PubMed ID: 21102794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous generation of single photons with controlled waveform in an ion-trap cavity system.
    Keller M; Lange B; Hayasaka K; Lange W; Walther H
    Nature; 2004 Oct; 431(7012):1075-8. PubMed ID: 15510142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incoherent fractional Fourier transform and its optical implementation.
    Mendlovic D; Zalevsky Z; Konforti N; Dorsch RG; Lohmann AW
    Appl Opt; 1995 Nov; 34(32):7615-20. PubMed ID: 21060640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single photons on demand from a single molecule at room temperature.
    Lounis B; Moerner WE
    Nature; 2000 Sep; 407(6803):491-3. PubMed ID: 11028995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle.
    Wang X; Zhao D
    Appl Opt; 2013 Sep; 52(25):6170-8. PubMed ID: 24085074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled phase shifts with a single quantum dot.
    Fushman I; Englund D; Faraon A; Stoltz N; Petroff P; Vuckovic J
    Science; 2008 May; 320(5877):769-72. PubMed ID: 18467584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Hough transform using a multilayer fractional Fourier method.
    Shi D; Zheng L; Liu J
    IEEE Trans Image Process; 2010 Jun; 19(6):1558-66. PubMed ID: 20144919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butterfly interconnection networks and their applications in information processing and optical computing: applications in fast-Fourier-transform-based opticalinformation processing.
    Sun DG; Wang NX; He LM; Lu ZW; Weng ZH
    Appl Opt; 1993 Dec; 32(35):7184-93. PubMed ID: 20861934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain.
    Niewelt B; Jastrzębski M; Kurzyna S; Nowosielski J; Wasilewski W; Mazelanik M; Parniak M
    Phys Rev Lett; 2023 Jun; 130(24):240801. PubMed ID: 37390418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional fourier transform: photonic implementation.
    Lohmann AW; Mendlovic D
    Appl Opt; 1994 Nov; 33(32):7661-4. PubMed ID: 20962975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.
    Robertson B; Zhang Z; Yang H; Redmond MM; Collings N; Liu J; Lin R; Jeziorska-Chapman AM; Moore JR; Crossland WA; Chu DP
    Appl Opt; 2012 Apr; 51(12):2212-22. PubMed ID: 22534935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform.
    Lippok N; Coen S; Nielsen P; Vanholsbeeck F
    Opt Express; 2012 Oct; 20(21):23398-413. PubMed ID: 23188304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.