These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24515038)

  • 1. Optical coherence correlation spectroscopy (OCCS).
    Broillet S; Sato A; Geissbuehler S; Pache C; Bouwens A; Lasser T; Leutenegger M
    Opt Express; 2014 Jan; 22(1):782-802. PubMed ID: 24515038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible light optical coherence correlation spectroscopy.
    Broillet S; Szlag D; Bouwens A; Maurizi L; Hofmann H; Lasser T; Leutenegger M
    Opt Express; 2014 Sep; 22(18):21944-57. PubMed ID: 25321570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography.
    Steiner P; Meier C; Koch VM
    Appl Opt; 2010 Dec; 49(36):6917-23. PubMed ID: 21173826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical applications of holographic microspectroscopy [invited].
    Jung J; Kim K; Yu H; Lee K; Lee S; Nahm S; Park H; Park Y
    Appl Opt; 2014 Sep; 53(27):G111-22. PubMed ID: 25322118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aperture effect correction in spectroscopic full-field optical coherence tomography.
    Morin A; Frigerio JM
    Appl Opt; 2012 Jun; 51(16):3431-8. PubMed ID: 22695580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral domain optical coherence tomography imaging with an integrated optics spectrometer.
    Nguyen VD; Akca BI; Wörhoff K; de Ridder RM; Pollnau M; van Leeuwen TG; Kalkman J
    Opt Lett; 2011 Apr; 36(7):1293-5. PubMed ID: 21479062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative phase microscopy with off-axis optical coherence tomography.
    Rinehart MT; Jaedicke V; Wax A
    Opt Lett; 2014 Apr; 39(7):1996-9. PubMed ID: 24686658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms.
    Hermann B; Hofer B; Meier C; Drexler W
    Opt Express; 2009 Dec; 17(26):24162-74. PubMed ID: 20052127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques.
    Kartakoullis A; Bousi E; Pitris C
    Opt Express; 2010 Apr; 18(9):9181-91. PubMed ID: 20588765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced imaging in the GI tract: spectroscopy and optical coherence tomography.
    ASGE Technology Committee
    Gastrointest Endosc; 2013 Oct; 78(4):568-73. PubMed ID: 24054739
    [No Abstract]   [Full Text] [Related]  

  • 11. Doppler calibration method for Spectral Domain OCT spectrometers.
    Faber DJ; van Leeuwen TG
    J Biophotonics; 2009 Jul; 2(6-7):407-15. PubMed ID: 19533622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera.
    Fan C; Yao G
    Opt Express; 2012 Sep; 20(20):22360-71. PubMed ID: 23037384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of capillary velocity assessment by statistical means using dual-beam spectral-domain Optical Coherence Tomography: a preliminary study.
    Daly SM; Silien C; Leahy MJ
    J Biophotonics; 2013 Sep; 6(9):718-32. PubMed ID: 23303589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive imaging of pulsatile movements of the optic nerve head in normal human subjects using phase-sensitive spectral domain optical coherence tomography.
    An L; Chao J; Johnstone M; Wang RK
    Opt Lett; 2013 May; 38(9):1512-4. PubMed ID: 23632535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical molecular imaging of atherosclerosis using nanoparticles: shedding new light on the darkness.
    Douma K; Megens RT; van Zandvoort MA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(4):376-88. PubMed ID: 21448988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of titanium dioxide nanoparticles coupled with diode laser on optical properties of in vitro normal and cancerous human lung tissues studied with optical coherence tomography and diffuse reflectance spectra.
    Zhou L; Wu G; Wei H; Guo Z; Yang H; He Y; Xie S; Liu Y; Meng Q
    J Biomed Opt; 2015 Apr; 20(4):046003. PubMed ID: 25858594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence characterization of narrow-linewidth beam by C-OFDR based Rayleigh speckle analysis.
    Inoue M; Koshikiya Y; Fan X; Ito F
    Opt Express; 2011 Oct; 19(21):19790-6. PubMed ID: 21996987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.