These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 24515122)

  • 1. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1.
    Bali S; Palmer DJ; Schroeder S; Ferguson SJ; Warren MJ
    Cell Mol Life Sci; 2014 Aug; 71(15):2837-63. PubMed ID: 24515122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular hijacking of siroheme for the synthesis of heme and d1 heme.
    Bali S; Lawrence AD; Lobo SA; Saraiva LM; Golding BT; Palmer DJ; Howard MJ; Ferguson SJ; Warren MJ
    Proc Natl Acad Sci U S A; 2011 Nov; 108(45):18260-5. PubMed ID: 21969545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
    Dailey HA; Dailey TA; Gerdes S; Jahn D; Jahn M; O'Brian MR; Warren MJ
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 28123057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of the modified tetrapyrroles-the pigments of life.
    Bryant DA; Hunter CN; Warren MJ
    J Biol Chem; 2020 May; 295(20):6888-6925. PubMed ID: 32241908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Unusual pathways and environmentally regulated genes of bacterial heme biosynthesis].
    Jahn D; Hungerer C; Troup B
    Naturwissenschaften; 1996 Sep; 83(9):389-400. PubMed ID: 8965922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme biosynthesis in prokaryotes.
    Layer G
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118861. PubMed ID: 32976912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX.
    Kobayashi K; Masuda T; Tajima N; Wada H; Sato N
    Genome Biol Evol; 2014 Aug; 6(8):2141-55. PubMed ID: 25108393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative pathways for siroheme synthesis in Klebsiella aerogenes.
    Kolko MM; Kapetanovich LA; Lawrence JG
    J Bacteriol; 2001 Jan; 183(1):328-35. PubMed ID: 11114933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The alternative route to heme in the methanogenic archaeon Methanosarcina barkeri.
    Kühner M; Haufschildt K; Neumann A; Storbeck S; Streif J; Layer G
    Archaea; 2014; 2014():327637. PubMed ID: 24669201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of enzymes in heme biosynthesis.
    Layer G; Reichelt J; Jahn D; Heinz DW
    Protein Sci; 2010 Jun; 19(6):1137-61. PubMed ID: 20506125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis.
    Wang P; Ji S; Grimm B
    J Exp Bot; 2022 Aug; 73(14):4624-4636. PubMed ID: 35536687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis.
    Storbeck S; Walther J; Müller J; Parmar V; Schiebel HM; Kemken D; Dülcks T; Warren MJ; Layer G
    FEBS J; 2009 Oct; 276(20):5973-82. PubMed ID: 19754882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs.
    Johnson C; England A; Munro-Ehrlich M; Colman DR; DuBois JL; Boyd ES
    J Bacteriol; 2021 Aug; 203(17):e0011721. PubMed ID: 34124941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway.
    Zhang J; Cui Z; Zhu Y; Zhu Z; Qi Q; Wang Q
    Biotechnol Adv; 2022; 55():107904. PubMed ID: 34999139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate-reducing bacteria reveal a new branch of tetrapyrrole metabolism.
    Lobo SA; Warren MJ; Saraiva LM
    Adv Microb Physiol; 2012; 61():267-95. PubMed ID: 23046956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline).
    Stasiuk R; Krucoń T; Matlakowska R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compound 800, a natural product isolated from genetically engineered Pseudomonas: proposed structure, reactivity, and putative relation to heme d1.
    Youn HS; Liang Q; Cha JK; Cai M; Timkovich R
    Biochemistry; 2004 Aug; 43(33):10730-8. PubMed ID: 15311934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls.
    Masuda T
    Photosynth Res; 2008 May; 96(2):121-43. PubMed ID: 18273690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cyanobacterial protoporphyrinogen oxidase HemJ is a new
    Skotnicová P; Sobotka R; Shepherd M; Hájek J; Hrouzek P; Tichý M
    J Biol Chem; 2018 Aug; 293(32):12394-12404. PubMed ID: 29925590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.