BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24515547)

  • 1. Cell adhesion behavior in 3D hydrogel scaffolds functionalized with D- or L-aminoacids.
    Benson K; Galla HJ; Kehr NS
    Macromol Biosci; 2014 Jun; 14(6):793-8. PubMed ID: 24515547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiomorphous Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogel Scaffolds for Cell Adhesion and Cell Enrichment.
    Kehr NS
    Biomacromolecules; 2016 Mar; 17(3):1117-22. PubMed ID: 26811946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-/microfiber scaffold for tissue engineering: physical and biological properties.
    Santana BP; Paganotto GF; Nedel F; Piva E; de Carvalho RV; Nör JE; Demarco FF; Carreño NL
    J Biomed Mater Res A; 2012 Nov; 100(11):3051-8. PubMed ID: 22711621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture.
    Frampton JP; Hynd MR; Shuler ML; Shain W
    Biomed Mater; 2011 Feb; 6(1):015002. PubMed ID: 21205998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation.
    Luckanagul J; Lee LA; Nguyen QL; Sitasuwan P; Yang X; Shazly T; Wang Q
    Biomacromolecules; 2012 Dec; 13(12):3949-58. PubMed ID: 23148483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the composition of alginate and gelatin derivatives in bioconjugated hydrogels on the fabrication of cell sheets and spherical tissues with living cell sheaths.
    Liu Y; Sakai S; Taya M
    Acta Biomater; 2013 May; 9(5):6616-23. PubMed ID: 23395920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell specificity of magnetic cell seeding approach to hydrogel colonization.
    Singh R; Wieser A; Reakasame S; Detsch R; Dietel B; Alexiou C; Boccaccini AR; Cicha I
    J Biomed Mater Res A; 2017 Nov; 105(11):2948-2957. PubMed ID: 28639348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells.
    Ivanovska J; Zehnder T; Lennert P; Sarker B; Boccaccini AR; Hartmann A; Schneider-Stock R; Detsch R
    Tissue Eng Part C Methods; 2016 Jul; 22(7):708-15. PubMed ID: 27269631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calcium-cross-linked hydrogel based on alginate-modified atelocollagen functions as a scaffold material.
    Kamimura W; Hattori R; Koyama H; Miyata T; Takato T
    J Biomater Sci Polym Ed; 2012; 23(5):609-28. PubMed ID: 21310111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid scaffold composed of hydrogel/3D-framework and its application as a dopamine delivery system.
    Kang KS; Lee SI; Hong JM; Lee JW; Cho HY; Son JH; Paek SH; Cho DW
    J Control Release; 2014 Feb; 175():10-6. PubMed ID: 24333627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties.
    Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C
    Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.
    Dai X; Ma C; Lan Q; Xu T
    Biofabrication; 2016 Oct; 8(4):045005. PubMed ID: 27725343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration.
    Lee H; Ahn S; Bonassar LJ; Kim G
    Macromol Rapid Commun; 2013 Jan; 34(2):142-9. PubMed ID: 23059986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering.
    Yan S; Wang T; Feng L; Zhu J; Zhang K; Chen X; Cui L; Yin J
    Biomacromolecules; 2014 Dec; 15(12):4495-508. PubMed ID: 25279766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of modified alginate hydrogels on mesenchymal stem cells and olfactory bulb-derived glial cells cultures.
    Marycz K; Szarek D; Grzesiak J; Wrzeszcz K
    Biomed Mater Eng; 2014; 24(3):1625-37. PubMed ID: 24840200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments.
    Fonseca KB; Bidarra SJ; Oliveira MJ; Granja PL; Barrias CC
    Acta Biomater; 2011 Apr; 7(4):1674-82. PubMed ID: 21193068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.