These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24515633)

  • 41. Auxin Transport in Zea mays Coleoptiles II. Influence of Light on the Transport of Indoleacetic Acid-2-C.
    Naqvi SM; Gordon SA
    Plant Physiol; 1967 Jan; 42(1):138-43. PubMed ID: 16656477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings.
    Garrido G; Ramón Guerrero J; Angel Cano E; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2002 Feb; 114(2):303-312. PubMed ID: 11903978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos.
    Greenwood MS; Goldsmith MH
    Planta; 1970 Dec; 95(4):297-313. PubMed ID: 24497144
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues.
    Simon S; Kubeš M; Baster P; Robert S; Dobrev PI; Friml J; Petrášek J; Zažímalová E
    New Phytol; 2013 Dec; 200(4):1034-48. PubMed ID: 23914741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rhythmicity in the Basipetal Transport of Indoleacetic Acid through Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Apr; 51(4):615-9. PubMed ID: 16658381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development.
    Wu G; Lewis DR; Spalding EP
    Plant Cell; 2007 Jun; 19(6):1826-37. PubMed ID: 17557807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lateral movement of auxin in phototropism.
    Dela Fuente RK; Leopold AC
    Plant Physiol; 1968 Jul; 43(7):1031-6. PubMed ID: 16656878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport of indoleacetic acid in intact roots of Phaseolus coccineus.
    Davies PJ; Mitchell EK
    Planta; 1972 Jun; 105(2):139-54. PubMed ID: 24477753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhythmic Differences in the Basipetal Movement of Indoleacetic Acid between Separated Upper and Lower Halves of Geotropically Stimulated Corn Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Aug; 52(2):166-70. PubMed ID: 16658520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways.
    Nishimura T; Nakano H; Hayashi K; Niwa C; Koshiba T
    Plant Cell Physiol; 2009 Nov; 50(11):1874-85. PubMed ID: 19897572
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auxin action on proton influx in corn roots and its correlation with growth.
    Evans ML; Mulkey TJ; Vesper MJ
    Planta; 1980 Oct; 148(5):510-2. PubMed ID: 24310195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. pH-Dependent accumulation of indoleacetic acid by corn coleoptile sections.
    Edwards KL; Goldsmith MH
    Planta; 1980 Feb; 147(5):457-66. PubMed ID: 24311169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Auxin activity of substituted benzoic acids and their effect on polar auxin transport.
    Keitt GW; Baker RA
    Plant Physiol; 1966 Dec; 41(10):1561-9. PubMed ID: 16656441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana.
    Negi S; Ivanchenko MG; Muday GK
    Plant J; 2008 Jul; 55(2):175-87. PubMed ID: 18363780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Timing of the response of coleoptiles to the application and withdrawal of various auxins.
    Evans ML; Hokanson R
    Planta; 1969 Mar; 85(1):85-95. PubMed ID: 24515558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular localization of the active process in polar transport of auxin.
    Goldsmith MH; Ray PM
    Planta; 1973 Dec; 111(4):297-314. PubMed ID: 24469696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Auxin transport and phototropism].
    Hager A; Schmidt R
    Planta; 1968 Dec; 83(4):372-86. PubMed ID: 24519276
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Experiments and hypothesis concerning the primary action of auxin in elongation growth].
    Hager A; Menzel H; Krauss A
    Planta; 1971 Mar; 100(1):47-75. PubMed ID: 24488103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes.
    Lewis DR; Miller ND; Splitt BL; Wu G; Spalding EP
    Plant Cell; 2007 Jun; 19(6):1838-50. PubMed ID: 17557805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.