These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 24515720)
1. The role of Cys179-Cys214 disulfide bond in the stability and folding of prion protein: insights from molecular dynamics simulations. Ning L; Guo J; Jin N; Liu H; Yao X J Mol Model; 2014 Feb; 20(2):2106. PubMed ID: 24515720 [TBL] [Abstract][Full Text] [Related]
2. Disulfide-crosslink scanning reveals prion-induced conformational changes and prion strain-specific structures of the pathological prion protein PrP Taguchi Y; Lu L; Marrero-Winkens C; Otaki H; Nishida N; Schatzl HM J Biol Chem; 2018 Aug; 293(33):12730-12740. PubMed ID: 29934306 [TBL] [Abstract][Full Text] [Related]
3. Perturbations in inter-domain associations may trigger the onset of pathogenic transformations in PrP(C): insights from atomistic simulations. Menon S; Sengupta N Mol Biosyst; 2015 May; 11(5):1443-53. PubMed ID: 25855580 [TBL] [Abstract][Full Text] [Related]
4. Structural insight into the antiprion compound inhibition mechanism of native prion folding over misfolding. Choi J; Govindaraj RG; Hyeon JW; Lee K; Ma S; Kim SY; Lee J; No KT Chem Biol Drug Des; 2017 Jun; 89(6):907-917. PubMed ID: 27933736 [TBL] [Abstract][Full Text] [Related]
5. The role of disulfide bridge in the folding and stability of the recombinant human prion protein. Maiti NR; Surewicz WK J Biol Chem; 2001 Jan; 276(4):2427-31. PubMed ID: 11069909 [TBL] [Abstract][Full Text] [Related]
6. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations. Palaniappan C; Narayanan RC; Sekar K ACS Chem Neurosci; 2021 Aug; 12(15):2810-2819. PubMed ID: 34296847 [TBL] [Abstract][Full Text] [Related]
7. Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: insight from molecular dynamics simulations. Guo J; Ning L; Ren H; Liu H; Yao X Biochim Biophys Acta; 2012 Feb; 1820(2):116-23. PubMed ID: 22155634 [TBL] [Abstract][Full Text] [Related]
8. Influence of pH on the human prion protein: insights into the early steps of misfolding. van der Kamp MW; Daggett V Biophys J; 2010 Oct; 99(7):2289-98. PubMed ID: 20923664 [TBL] [Abstract][Full Text] [Related]
9. A role for intermolecular disulfide bonds in prion diseases? Welker E; Wedemeyer WJ; Scheraga HA Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4334-6. PubMed ID: 11274354 [TBL] [Abstract][Full Text] [Related]
10. Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality. Coleman BM; Harrison CF; Guo B; Masters CL; Barnham KJ; Lawson VA; Hill AF J Virol; 2014 Mar; 88(5):2690-703. PubMed ID: 24352465 [TBL] [Abstract][Full Text] [Related]
11. Structural determinants in prion protein folding and stability. Benetti F; Biarnés X; Attanasio F; Giachin G; Rizzarelli E; Legname G J Mol Biol; 2014 Nov; 426(22):3796-3810. PubMed ID: 25280897 [TBL] [Abstract][Full Text] [Related]
12. NMR structure of a variant human prion protein with two disulfide bridges. Zahn R; Güntert P; von Schroetter C; Wüthrich K J Mol Biol; 2003 Feb; 326(1):225-34. PubMed ID: 12547204 [TBL] [Abstract][Full Text] [Related]
13. Slow spontaneous α-to-β structural conversion in a non-denaturing neutral condition reveals the intrinsically disordered property of the disulfide-reduced recombinant mouse prion protein. Sang JC; Lee CY; Luh FY; Huang YW; Chiang YW; Chen RP Prion; 2012; 6(5):489-97. PubMed ID: 22987112 [TBL] [Abstract][Full Text] [Related]
14. Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation. Biljan I; Ilc G; Giachin G; Raspadori A; Zhukov I; Plavec J; Legname G J Mol Biol; 2011 Sep; 412(4):660-73. PubMed ID: 21839748 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics as an approach to study prion protein misfolding and the effect of pathogenic mutations. van der Kamp MW; Daggett V Top Curr Chem; 2011; 305():169-97. PubMed ID: 21526434 [TBL] [Abstract][Full Text] [Related]
16. Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations. Chen W; van der Kamp MW; Daggett V Biochemistry; 2010 Nov; 49(45):9874-81. PubMed ID: 20949975 [TBL] [Abstract][Full Text] [Related]
17. Prion protein and its conformational conversion: a structural perspective. Surewicz WK; Apostol MI Top Curr Chem; 2011; 305():135-67. PubMed ID: 21630136 [TBL] [Abstract][Full Text] [Related]
18. Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis. Honda R Biophys J; 2018 Feb; 114(4):885-892. PubMed ID: 29490248 [TBL] [Abstract][Full Text] [Related]
19. Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding. van der Kamp MW; Daggett V J Mol Biol; 2010 Dec; 404(4):732-48. PubMed ID: 20932979 [TBL] [Abstract][Full Text] [Related]
20. Enhanced stability of human prion proteins with two disulfide bridges. Knowles TP; Zahn R Biophys J; 2006 Aug; 91(4):1494-500. PubMed ID: 16751235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]