These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24515810)

  • 61. Importance of nitric oxide in cadmium stress tolerance in crop plants.
    Gill SS; Hasanuzzaman M; Nahar K; Macovei A; Tuteja N
    Plant Physiol Biochem; 2013 Feb; 63():254-61. PubMed ID: 23313792
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal-homeostasis, and yield responses of mung bean (Vigna radiata L.) varieties.
    Aqeel M; Khalid N; Tufail A; Ahmad RZ; Akhter MS; Luqman M; Javed MT; Irshad MK; Alamri S; Hashem M; Noman A
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27376-27390. PubMed ID: 33507502
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plant screening of halophyte species for cadmium phytoremediation.
    López-Chuken UJ; Young SD
    Z Naturforsch C J Biosci; 2005; 60(3-4):236-43. PubMed ID: 15948589
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Contrasting effects of engineered carbon nanotubes on plants: a review.
    Vithanage M; Seneviratne M; Ahmad M; Sarkar B; Ok YS
    Environ Geochem Health; 2017 Dec; 39(6):1421-1439. PubMed ID: 28444473
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review.
    Zulfiqar U; Jiang W; Xiukang W; Hussain S; Ahmad M; Maqsood MF; Ali N; Ishfaq M; Kaleem M; Haider FU; Farooq N; Naveed M; Kucerik J; Brtnicky M; Mustafa A
    Front Plant Sci; 2022; 13():773815. PubMed ID: 35371142
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Current Scenario of Pb Toxicity in Plants: Unraveling Plethora of Physiological Responses.
    Kohli SK; Handa N; Bali S; Khanna K; Arora S; Sharma A; Bhardwaj R
    Rev Environ Contam Toxicol; 2020; 249():153-197. PubMed ID: 30900073
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The molecular mechanism of zinc and cadmium stress response in plants.
    Lin YF; Aarts MG
    Cell Mol Life Sci; 2012 Oct; 69(19):3187-206. PubMed ID: 22903262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Growth and cadmium uptake in barley under cadmium stress.
    Aery NC; Rana DK
    J Environ Biol; 2003 Apr; 24(2):117-23. PubMed ID: 12974451
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sorption of cadmium and their effects on growth, protein contents, and photosynthetic pigment composition of Veronica anagallis-aquatica L. and Ranunculus aquatilis L.
    Saygideğer S
    Bull Environ Contam Toxicol; 2000 Oct; 65(4):459-64. PubMed ID: 10960136
    [No Abstract]   [Full Text] [Related]  

  • 70. Clonal integration facilitates spread of Paspalum paspaloides from terrestrial to cadmium-contaminated aquatic habitats.
    Luo FL; Xing YP; Wei GW; Li CY; Yu FH
    Plant Biol (Stuttg); 2017 Nov; 19(6):859-867. PubMed ID: 28836322
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants.
    Rolón-Cárdenas GA; Arvizu-Gómez JL; Soria-Guerra RE; Pacheco-Aguilar JR; Alatorre-Cobos F; Hernández-Morales A
    Environ Geochem Health; 2022 Nov; 44(11):3743-3764. PubMed ID: 35022877
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress.
    Parmar P; Kumari N; Sharma V
    Bot Stud; 2013 Dec; 54(1):45. PubMed ID: 28510881
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lead stress effects on physiobiochemical activities of higher plants.
    Sengar RS; Gautam M; Sengar RS; Garg SK; Sengar K; Chaudhary R
    Rev Environ Contam Toxicol; 2008; 196():73-93. PubMed ID: 19025093
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cd
    M SA; Puthur JT
    Int J Phytoremediation; 2019; 21(9):866-877. PubMed ID: 31016993
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Response of higher plants to lead contaminated environment.
    Singh RP; Tripathi RD; Sinha SK; Maheshwari R; Srivastava HS
    Chemosphere; 1997 Jun; 34(11):2467-93. PubMed ID: 9192470
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of growth agents and mercury on several herbs.
    Liu Z; Wang LA; Ding S; Li Y
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12012-12021. PubMed ID: 29450779
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future.
    Sharifi R; Ryu CM
    Ann Bot; 2018 Aug; 122(3):349-358. PubMed ID: 29982345
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations.
    Gomes MA; Hauser-Davis RA; Suzuki MS; Vitória AP
    Ecotoxicol Environ Saf; 2017 Jun; 140():55-64. PubMed ID: 28231506
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity.
    Zafar-Ul-Hye M; Naeem M; Danish S; Khan MJ; Fahad S; Datta R; Brtnicky M; Kintl A; Hussain GS; El-Esawi MA
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33080896
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Implications of CaCl
    Choi HS; Hong JS; Geronimo FKF; Kim LH
    Water Sci Technol; 2018 Oct; 78(5-6):1045-1053. PubMed ID: 30339529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.