BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24515833)

  • 1. Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation.
    Mueller SJ; Lang D; Hoernstein SN; Lang EG; Schuessele C; Schmidt A; Fluck M; Leisibach D; Niegl C; Zimmer AD; Schlosser A; Reski R
    Plant Physiol; 2014 Apr; 164(4):2081-95. PubMed ID: 24515833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaches to Characterize Organelle, Compartment, or Structure Purity.
    Mueller SJ; Hoernstein SN; Reski R
    Methods Mol Biol; 2017; 1511():13-28. PubMed ID: 27730599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and communication of subcellular compartments: An integrated approach.
    Mueller SJ; Reski R
    Plant Signal Behav; 2014 Apr; 9():. PubMed ID: 24786592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial proteome of the moss Physcomitrella patens.
    Mueller SJ; Hoernstein SN; Reski R
    Mitochondrion; 2017 Mar; 33():38-44. PubMed ID: 27450107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms.
    K Raval P; MacLeod AI; Gould SB
    PLoS Biol; 2024 May; 22(5):e3002608. PubMed ID: 38713727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids.
    Richter U; Kiessling J; Hedtke B; Decker E; Reski R; Börner T; Weihe A
    Gene; 2002 May; 290(1-2):95-105. PubMed ID: 12062804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics.
    Lang EG; Mueller SJ; Hoernstein SN; Porankiewicz-Asplund J; Vervliet-Scheebaum M; Reski R
    Plant Cell Rep; 2011 Feb; 30(2):205-15. PubMed ID: 20960201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Proteomic Analysis of Wild-Type
    Luo W; Komatsu S; Abe T; Matsuura H; Takahashi K
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome analysis of chloroplasts from the moss Physcomitrella patens (Hedw.) B.S.G.
    Polyakov NB; Slizhikova DK; Izmalkova MY; Cherepanova NI; Kazakov VS; Rogova MA; Zhukova NA; Alexeev DG; Bazaleev NA; Skripnikov AY; Govorun VM
    Biochemistry (Mosc); 2010 Dec; 75(12):1470-83. PubMed ID: 21314618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Scale Characterization of Predicted Plastid-Targeted Proteomes in Higher Plants.
    Christian RW; Hewitt SL; Roalson EH; Dhingra A
    Sci Rep; 2020 May; 10(1):8281. PubMed ID: 32427841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent surprises in protein targeting to mitochondria and plastids.
    Millar AH; Whelan J; Small I
    Curr Opin Plant Biol; 2006 Dec; 9(6):610-5. PubMed ID: 17008120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria.
    Grabsztunowicz M; Rokka A; Farooq I; Aro EM; Mulo P
    BMC Plant Biol; 2020 Sep; 20(1):413. PubMed ID: 32887556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitutional RNA Editing in Plant Organelles.
    Ichinose M; Sugita M
    Methods Mol Biol; 2021; 2181():1-12. PubMed ID: 32729071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants.
    Gawryluk RM; Chisholm KA; Pinto DM; Gray MW
    J Proteomics; 2014 Sep; 109():400-16. PubMed ID: 25026440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of two phage-type RNA polymerase cDNAs in the moss Physcomitrella patens: implication of recent evolution of nuclear-encoded RNA polymerase of plastids in plants.
    Kabeya Y; Hashimoto K; Sato N
    Plant Cell Physiol; 2002 Mar; 43(3):245-55. PubMed ID: 11917078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bending of protonema cells in a plastid glycolate/glycerate transporter knockout line of Physcomitrella patens.
    Nakahara J; Takechi K; Myouga F; Moriyama Y; Sato H; Takio S; Takano H
    PLoS One; 2015; 10(3):e0118804. PubMed ID: 25793376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition, conservation, and loss of dual-targeted proteins in land plants.
    Xu L; Carrie C; Law SR; Murcha MW; Whelan J
    Plant Physiol; 2013 Feb; 161(2):644-62. PubMed ID: 23257241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens.
    Wang X; Chen L; Yang A; Bu C; He Y
    Plant Cell Physiol; 2017 May; 58(5):946-961. PubMed ID: 28398533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions.
    Majeran W; Friso G; Asakura Y; Qu X; Huang M; Ponnala L; Watkins KP; Barkan A; van Wijk KJ
    Plant Physiol; 2012 Jan; 158(1):156-89. PubMed ID: 22065420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes Sufficient for Synthesizing Peptidoglycan are Retained in Gymnosperm Genomes, and MurE from Larix gmelinii can Rescue the Albino Phenotype of Arabidopsis MurE Mutation.
    Lin X; Li N; Kudo H; Zhang Z; Li J; Wang L; Zhang W; Takechi K; Takano H
    Plant Cell Physiol; 2017 Mar; 58(3):587-597. PubMed ID: 28158764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.