These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 24515899)

  • 1. Microfluidic blood cell sorting: now and beyond.
    Yu ZT; Aw Yong KM; Fu J
    Small; 2014 May; 10(9):1687-703. PubMed ID: 24515899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic: an innovative tool for efficient cell sorting.
    Autebert J; Coudert B; Bidard FC; Pierga JY; Descroix S; Malaquin L; Viovy JL
    Methods; 2012 Jul; 57(3):297-307. PubMed ID: 22796377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments.
    Shanehband N; Naghib SM
    Biochimie; 2024 May; 220():122-143. PubMed ID: 38176605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics for cell separation.
    Bhagat AA; Bow H; Hou HW; Tan SJ; Han J; Lim CT
    Med Biol Eng Comput; 2010 Oct; 48(10):999-1014. PubMed ID: 20414811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chips for cell sorting.
    Chen P; Feng X; Du W; Liu BF
    Front Biosci; 2008 Jan; 13():2464-83. PubMed ID: 17981727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications.
    Nasiri R; Shamloo A; Ahadian S; Amirifar L; Akbari J; Goudie MJ; Lee K; Ashammakhi N; Dokmeci MR; Di Carlo D; Khademhosseini A
    Small; 2020 Jul; 16(29):e2000171. PubMed ID: 32529791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells.
    Chabert M; Viovy JL
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3191-6. PubMed ID: 18316742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-on-a-chip.
    Toner M; Irimia D
    Annu Rev Biomed Eng; 2005; 7():77-103. PubMed ID: 16004567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics as an emerging paradigm for assisted reproductive technology: A sperm separation perspective.
    Bouloorchi Tabalvandani M; Saeidpour Z; Habibi Z; Javadizadeh S; Firoozabadi SA; Badieirostami M
    Biomed Microdevices; 2024 Apr; 26(2):23. PubMed ID: 38652182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistage microfluidic cell sorting method and chip based on size and stiffness.
    Li G; Ji Y; Wu Y; Liu Y; Li H; Wang Y; Chi M; Sun H; Zhu H
    Biosens Bioelectron; 2023 Oct; 237():115451. PubMed ID: 37327603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics.
    Ni C; Zhu Z; Zhou Z; Xiang N
    Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling.
    Qu BY; Wu ZY; Fang F; Bai ZM; Yang DZ; Xu SK
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1317-24. PubMed ID: 18807015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell manipulation in microfluidics.
    Yun H; Kim K; Lee WG
    Biofabrication; 2013 Jun; 5(2):022001. PubMed ID: 23403762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.