These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 24515970)
1. Enabling tablet product development of 5-fluorocytosine through integrated crystal and particle engineering. Perumalla SR; Sun CC J Pharm Sci; 2014 Apr; 103(4):1126-32. PubMed ID: 24515970 [TBL] [Abstract][Full Text] [Related]
2. Enabling the Tablet Product Development of 5-Fluorocytosine by Conjugate Acid Base Cocrystals. Perumalla SR; Paul S; Sun CC J Pharm Sci; 2016 Jun; 105(6):1960-1966. PubMed ID: 27238493 [TBL] [Abstract][Full Text] [Related]
3. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Hirschberg C; Sun CC; Rantanen J J Pharm Biomed Anal; 2016 Sep; 128():462-468. PubMed ID: 27368089 [TBL] [Abstract][Full Text] [Related]
4. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. Sun WJ; Aburub A; Sun CC J Pharm Sci; 2017 Jul; 106(7):1772-1777. PubMed ID: 28322940 [TBL] [Abstract][Full Text] [Related]
5. Material-Sparing and Expedited Development of a Tablet Formulation of Carbamazepine Glutaric Acid Cocrystal- a QbD Approach. Yamashita H; Sun CC Pharm Res; 2020 Jul; 37(8):153. PubMed ID: 32705421 [TBL] [Abstract][Full Text] [Related]
6. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression. Chattoraj S; Sun CC J Pharm Sci; 2018 Apr; 107(4):968-974. PubMed ID: 29247737 [TBL] [Abstract][Full Text] [Related]
7. Expedited Development of Diphenhydramine Orally Disintegrating Tablet through Integrated Crystal and Particle Engineering. Wang C; Hu S; Sun CC Mol Pharm; 2017 Oct; 14(10):3399-3408. PubMed ID: 28825961 [TBL] [Abstract][Full Text] [Related]
8. Tabletability Modulation Through Surface Engineering. Osei-Yeboah F; Sun CC J Pharm Sci; 2015 Aug; 104(8):2645-8. PubMed ID: 26059496 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis, and characterization of new 5-fluorocytosine salts. Perumalla SR; Pedireddi VR; Sun CC Mol Pharm; 2013 Jun; 10(6):2462-6. PubMed ID: 23631720 [TBL] [Abstract][Full Text] [Related]
10. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression. Capece M; Huang Z; Davé R J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431 [TBL] [Abstract][Full Text] [Related]
11. Expedited Tablet Formulation Development of a Highly Soluble Carbamazepine Cocrystal Enabled by Precipitation Inhibition in Diffusion Layer. Yamashita H; Sun CC Pharm Res; 2019 Apr; 36(6):90. PubMed ID: 31016440 [TBL] [Abstract][Full Text] [Related]
12. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example. Sun CC Int J Pharm; 2006 Dec; 326(1-2):94-9. PubMed ID: 16926076 [TBL] [Abstract][Full Text] [Related]
13. Improving the Manufacturability of Cohesive and Poorly Compactable API for Direct Compression of Mini-tablets at High Drug Loading via Particle Engineering. Chen L; Lin Y; Irdam E; Madden N; Osei-Yeboah F Pharm Res; 2022 Dec; 39(12):3185-3195. PubMed ID: 36319885 [TBL] [Abstract][Full Text] [Related]
14. The efficient development of a sildenafil orally disintegrating tablet using a material sparing and expedited approach. Wang C; Sun CC Int J Pharm; 2020 Nov; 589():119816. PubMed ID: 32877727 [TBL] [Abstract][Full Text] [Related]
15. Enabling direct compression tablet formulation of celecoxib by simultaneously eliminating punch sticking, improving manufacturability, and enhancing dissolution through co-processing with a mesoporous carrier. Paul S; Guo Y; Wang C; Dun J; Calvin Sun C Int J Pharm; 2023 Jun; 641():123041. PubMed ID: 37201765 [TBL] [Abstract][Full Text] [Related]
16. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press. Gamlen MJ; Martini LG; Al Obaidy KG Drug Dev Ind Pharm; 2015 Jan; 41(1):163-9. PubMed ID: 24171692 [TBL] [Abstract][Full Text] [Related]
17. Stability and repeatability of a continuous twin screw granulation and drying system. Vercruysse J; Delaet U; Van Assche I; Cappuyns P; Arata F; Caporicci G; De Beer T; Remon JP; Vervaet C Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1031-8. PubMed ID: 23702273 [TBL] [Abstract][Full Text] [Related]
18. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design. Dai S; Xu B; Zhang Z; Yu J; Wang F; Shi X; Qiao Y Int J Pharm; 2019 Dec; 572():118742. PubMed ID: 31648016 [TBL] [Abstract][Full Text] [Related]
19. Crystal coating via spray drying to improve powder tabletability. Vanhoorne V; Peeters E; Van Snick B; Remon JP; Vervaet C Eur J Pharm Biopharm; 2014 Nov; 88(3):939-44. PubMed ID: 25445306 [TBL] [Abstract][Full Text] [Related]
20. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study. Schaller BE; Moroney KM; Castro-Dominguez B; Cronin P; Belen-Girona J; Ruane P; Croker DM; Walker GM Int J Pharm; 2019 Jul; 566():615-630. PubMed ID: 31158454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]