These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 24516167)
1. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Voigt J; Christensen J; Shastri VP Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2942-7. PubMed ID: 24516167 [TBL] [Abstract][Full Text] [Related]
2. Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Sundaramoorthy P; Ramasamy T; Mishra SK; Jeong KY; Yong CS; Kim JO; Kim HM Acta Biomater; 2016 Sep; 42():220-231. PubMed ID: 27395829 [TBL] [Abstract][Full Text] [Related]
3. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. Langston Suen WL; Chau Y J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the role of β1 integrin isoforms in cRGD-mediated uptake of nanoparticles bearing hydrophilized alkyne moieties in epithelial and endothelial cells. Zhang W; Teske N; Samadi M; Sarem M; Shastri VP Acta Biomater; 2020 Oct; 116():344-355. PubMed ID: 32871280 [TBL] [Abstract][Full Text] [Related]
5. Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly(lactic acid)-poly(ethylene glycol) nanoparticles through caveolae-mediated endocytosis. Liu C; Yu W; Chen Z; Zhang J; Zhang N J Control Release; 2011 Apr; 151(2):162-75. PubMed ID: 21376765 [TBL] [Abstract][Full Text] [Related]
6. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Agarwal R; Singh V; Jurney P; Shi L; Sreenivasan SV; Roy K Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17247-52. PubMed ID: 24101456 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable polymeric nanoparticles administered in the cerebrospinal fluid: Brain biodistribution, preferential internalization in microglia and implications for cell-selective drug release. Peviani M; Capasso Palmiero U; Cecere F; Milazzo R; Moscatelli D; Biffi A Biomaterials; 2019 Jul; 209():25-40. PubMed ID: 31026609 [TBL] [Abstract][Full Text] [Related]
9. Mechanical cues modulate cellular uptake of nanoparticles in cancer via clathrin-mediated and caveolae-mediated endocytosis pathways. Wei X; Wei R; Jiang G; Jia Y; Lou H; Yang Z; Luo D; Huang Q; Xu S; Yang X; Zhou Y; Li X; Ji T; Hu J; Xi L; Ma D; Ye F; Gao Q Nanomedicine (Lond); 2019 Mar; 14(5):613-626. PubMed ID: 30816057 [TBL] [Abstract][Full Text] [Related]
10. Preparation of a cationic nanoemulsome for intratumoral drug delivery and its enhancing effect on cellular uptake in vitro. Li H; Xiao Y; Niu J; Chen X; Ping Q J Nanosci Nanotechnol; 2011 Oct; 11(10):8547-55. PubMed ID: 22400223 [TBL] [Abstract][Full Text] [Related]
11. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles. Xin H; Sha X; Jiang X; Chen L; Law K; Gu J; Chen Y; Wang X; Fang X Biomaterials; 2012 Feb; 33(5):1673-81. PubMed ID: 22133551 [TBL] [Abstract][Full Text] [Related]
12. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Zhang B; Sun X; Mei H; Wang Y; Liao Z; Chen J; Zhang Q; Hu Y; Pang Z; Jiang X Biomaterials; 2013 Dec; 34(36):9171-82. PubMed ID: 24008043 [TBL] [Abstract][Full Text] [Related]
13. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. da Luz CM; Boyles MS; Falagan-Lotsch P; Pereira MR; Tutumi HR; de Oliveira Santos E; Martins NB; Himly M; Sommer A; Foissner I; Duschl A; Granjeiro JM; Leite PE J Nanobiotechnology; 2017 Jan; 15(1):11. PubMed ID: 28143572 [TBL] [Abstract][Full Text] [Related]
15. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide release in human aortic endothelial cells mediated by delivery of amphiphilic polysiloxane nanoparticles to caveolae. Nishikawa T; Iwakiri N; Kaneko Y; Taguchi A; Fukushima K; Mori H; Morone N; Kadokawa J Biomacromolecules; 2009 Aug; 10(8):2074-85. PubMed ID: 19583242 [TBL] [Abstract][Full Text] [Related]
17. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Muro S; Garnacho C; Champion JA; Leferovich J; Gajewski C; Schuchman EH; Mitragotri S; Muzykantov VR Mol Ther; 2008 Aug; 16(8):1450-8. PubMed ID: 18560419 [TBL] [Abstract][Full Text] [Related]
18. Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis. Ho YT; Kamm RD; Kah JCY Nanoscale; 2018 Jul; 10(26):12386-12397. PubMed ID: 29926047 [TBL] [Abstract][Full Text] [Related]
19. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. Huang R; Ke W; Han L; Liu Y; Shao K; Ye L; Lou J; Jiang C; Pei Y J Cereb Blood Flow Metab; 2009 Dec; 29(12):1914-23. PubMed ID: 19654588 [TBL] [Abstract][Full Text] [Related]
20. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa. Bejgum BC; Donovan MD Mol Pharm; 2021 Jan; 18(1):429-440. PubMed ID: 33346666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]