These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24516183)

  • 1. Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.
    Gidopoulos NI; Gross EK
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130059. PubMed ID: 24516183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
    Schaupp T; Engel V
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200385. PubMed ID: 35341310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the calculation of time-dependent electron momenta within the Born-Oppenheimer approximation.
    Schaupp T; Engel V
    J Chem Phys; 2019 Apr; 150(16):164110. PubMed ID: 31042901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF.
    Li C; Requist R; Gross EKU
    J Chem Phys; 2018 Feb; 148(8):084110. PubMed ID: 29495788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.
    Diestler DJ
    J Phys Chem A; 2012 Mar; 116(11):2728-35. PubMed ID: 22103768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factorization and recomposition of molecular wave functions.
    Lefebvre R
    J Chem Phys; 2016 Sep; 145(12):124108. PubMed ID: 27782658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction.
    Cederbaum LS
    J Chem Phys; 2013 Jun; 138(22):224110. PubMed ID: 23781786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Born-Oppenheimer and non-Born-Oppenheimer contributions to time-dependent electron momenta.
    Schaupp T; Engel V
    J Chem Phys; 2020 May; 152(20):204310. PubMed ID: 32486694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Quantum Dynamics: A Quantum Computing Perspective.
    Ollitrault PJ; Miessen A; Tavernelli I
    Acc Chem Res; 2021 Dec; 54(23):4229-4238. PubMed ID: 34787398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the Born-Oppenheimer approximation: a treatment of electronic flux density in electronically adiabatic molecular processes.
    Diestler DJ
    J Phys Chem A; 2013 Jun; 117(22):4698-708. PubMed ID: 23634652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Flux Density beyond the Born-Oppenheimer Approximation.
    Schild A; Agostini F; Gross EK
    J Phys Chem A; 2016 May; 120(19):3316-25. PubMed ID: 26878256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adiabatic limit of the exact factorization of the electron-nuclear wave function.
    Eich FG; Agostini F
    J Chem Phys; 2016 Aug; 145(5):054110. PubMed ID: 27497542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear velocity perturbation theory for vibrational circular dichroism: An approach based on the exact factorization of the electron-nuclear wave function.
    Scherrer A; Agostini F; Sebastiani D; Gross EK; Vuilleumier R
    J Chem Phys; 2015 Aug; 143(7):074106. PubMed ID: 26298114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.
    McKemmish LK; McKenzie RH; Hush NS; Reimers JR
    Phys Chem Chem Phys; 2015 Oct; 17(38):24666-82. PubMed ID: 26204101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single surface beyond Born-Oppenheimer equation for a three-state model Hamiltonian of Na3 cluster.
    Kumar Paul A; Sardar S; Sarkar B; Adhikari S
    J Chem Phys; 2009 Sep; 131(12):124312. PubMed ID: 19791886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement in the Born-Oppenheimer Approximation.
    Izmaylov AF; Franco I
    J Chem Theory Comput; 2017 Jan; 13(1):20-28. PubMed ID: 27959533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation.
    Parkhill JA; Markovich T; Tempel DG; Aspuru-Guzik A
    J Chem Phys; 2012 Dec; 137(22):22A547. PubMed ID: 23249084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated three-dimensional electron-nuclear motion: Adiabatic dynamics vs passage of conical intersections.
    Schaupp T; Engel V
    J Chem Phys; 2022 Feb; 156(7):074302. PubMed ID: 35183098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.
    Reimers JR; McKemmish LK; McKenzie RH; Hush NS
    Phys Chem Chem Phys; 2015 Oct; 17(38):24641-65. PubMed ID: 26196265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.