These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24516720)

  • 1. Joining or opting out of a Lotka-Volterra game between predators and prey: does the best strategy depend on modelling energy lost and gained?
    Staňková K; Abate A; Sabelis MW; Buša J; You L
    Interface Focus; 2013 Dec; 3(6):20130034. PubMed ID: 24516720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic dynamics of predator-prey interactions.
    Singh A
    PLoS One; 2021; 16(8):e0255880. PubMed ID: 34383811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics of prey exploitation in a metapopulation of predators.
    Pels B; de Roos AM; Sabelis MW
    Am Nat; 2002 Feb; 159(2):172-89. PubMed ID: 18707412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka-Volterra model.
    Staňková K; Abate A; Sabelis MW
    J Math Biol; 2013 Mar; 66(4-5):767-94. PubMed ID: 23070213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs.
    Krivan V
    Am Nat; 2007 Nov; 170(5):771-82. PubMed ID: 17926298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ORGANIZATION OF PREDATOR-PREY COMMUNITIES AS AN EVOLUTIONARY GAME.
    Brown JS; Vincent TL
    Evolution; 1992 Oct; 46(5):1269-1283. PubMed ID: 28569003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Microplastic Particles on Population Dynamics of Predator and Prey: Implication of the Lotka-Volterra Model.
    Huang Q; Lin Y; Zhong Q; Ma F; Zhang Y
    Sci Rep; 2020 Mar; 10(1):4500. PubMed ID: 32161352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A predator-prey model with predators using hawk and dove tactics.
    Auger P; Bravo de la Parra R; Morand S; Sánchez E
    Math Biosci; 2002; 177-178():185-200. PubMed ID: 11965255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme.
    Dubey B; Zhao TG; Jonsson M; Rahmanov H
    J Theor Biol; 2010 May; 264(1):154-60. PubMed ID: 20109470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lotka-Volterra systems in environments with randomly disordered temporal periodicity.
    Naess A; Dimentberg MF; Gaidai O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021126. PubMed ID: 18850805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple preferred escape trajectories are explained by a geometric model incorporating prey's turn and predator attack endpoint.
    Kawabata Y; Akada H; Shimatani KI; Nishihara GN; Kimura H; Nishiumi N; Domenici P
    Elife; 2023 Feb; 12():. PubMed ID: 36790147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a disease affecting a predator on the dynamics of a predator-prey system.
    Auger P; McHich R; Chowdhury T; Sallet G; Tchuente M; Chattopadhyay J
    J Theor Biol; 2009 Jun; 258(3):344-51. PubMed ID: 19063903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High order sliding mode control for restoration of a population of predators in a Lotka-Volterra system.
    Escobar JA; Gallardo-Hernandez AG; Gonzalez-Olvera MA; Revilla-Monsalve C; Hernandez D; Leder R
    J Biol Phys; 2023 Dec; 49(4):509-520. PubMed ID: 37801181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space race functional responses.
    Sjödin H; Brännström Å; Englund G
    Proc Biol Sci; 2015 Feb; 282(1801):20142121. PubMed ID: 25589602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking prey or tracking the prey's resource? Mechanisms of movement and optimal habitat selection by predators.
    Flaxman SM; Lou Y
    J Theor Biol; 2009 Jan; 256(2):187-200. PubMed ID: 18952108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predator and prey space use: dragonflies and tadpoles in an interactive game.
    Hammond JI; Luttbeg B; Sih A
    Ecology; 2007 Jun; 88(6):1525-35. PubMed ID: 17601144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predator-prey interactions shape thermal patch use in a newt larvae-dragonfly nymph model.
    Gvoždík L; Černická E; Van Damme R
    PLoS One; 2014; 8(6):e65079. PubMed ID: 23755175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring parameters of prey switching in a 1 predator-2 prey plankton system with a linear preference tradeoff.
    Piltz SH; Harhanen L; Porter MA; Maini PK
    J Theor Biol; 2018 Nov; 456():108-122. PubMed ID: 30009794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed movement of predators and the emergence of density-dependence in predator-prey models.
    Arditi R; Tyutyunov Y; Morgulis A; Govorukhin V; Senina I
    Theor Popul Biol; 2001 May; 59(3):207-21. PubMed ID: 11444960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Lotka-Volterra predator-prey systems under telegraph noise.
    Auger P; Du NH; Hieu NT
    Math Biosci Eng; 2009 Oct; 6(4):683-700. PubMed ID: 19835424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.