These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 24517119)
1. Internal structures of thermosensitive hybrid microgels investigated by means of small-angle X-ray scattering. Suzuki D; Nagase Y; Kureha T; Sato T J Phys Chem B; 2014 Feb; 118(8):2194-204. PubMed ID: 24517119 [TBL] [Abstract][Full Text] [Related]
2. Small-Angle X-ray Scattering Study on Internal Microscopic Structures of Poly(N-isopropylacrylamide-co-tris(2,2'-bipyridyl))ruthenium(II) Complex Microgels. Matsui S; Kureha T; Nagase Y; Okeyoshi K; Yoshida R; Sato T; Suzuki D Langmuir; 2015 Jul; 31(26):7228-37. PubMed ID: 26065589 [TBL] [Abstract][Full Text] [Related]
3. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Stieger M; Pedersen JS; Lindner P; Richtering W Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516 [TBL] [Abstract][Full Text] [Related]
4. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture. Scherzinger C; Holderer O; Richter D; Richtering W Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036 [TBL] [Abstract][Full Text] [Related]
5. Relationship between temperature-induced changes in internal microscopic structures of poly(N-isopropylacrylamide) microgels and organic dye uptake behavior. Kureha T; Sato T; Suzuki D Langmuir; 2014 Jul; 30(29):8717-25. PubMed ID: 25003512 [TBL] [Abstract][Full Text] [Related]
9. Inner structure and dynamics of microgels with low and medium crosslinker content prepared via surfactant-free precipitation polymerization and continuous monomer feeding approach. Kyrey T; Witte J; Feoktystov A; Pipich V; Wu B; Pasini S; Radulescu A; Witt MU; Kruteva M; von Klitzing R; Wellert S; Holderer O Soft Matter; 2019 Aug; 15(32):6536-6546. PubMed ID: 31355828 [TBL] [Abstract][Full Text] [Related]
10. Thermo-, pH-, and light-responsive poly(N-isopropylacrylamide-co-methacrylic acid)--Au hybrid microgels prepared by the in situ reduction method based on Au-thiol chemistry. Shi S; Wang Q; Wang T; Ren S; Gao Y; Wang N J Phys Chem B; 2014 Jun; 118(25):7177-86. PubMed ID: 24897339 [TBL] [Abstract][Full Text] [Related]
11. Controllable stabilization of poly(N-isopropylacrylamide)-based microgel films through biomimetic mineralization of calcium carbonate. Xia Y; Gu Y; Zhou X; Xu H; Zhao X; Yaseen M; Lu JR Biomacromolecules; 2012 Aug; 13(8):2299-308. PubMed ID: 22715987 [TBL] [Abstract][Full Text] [Related]
13. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. Tzounis L; Doña M; Lopez-Romero JM; Fery A; Contreras-Caceres R ACS Appl Mater Interfaces; 2019 Aug; 11(32):29360-29372. PubMed ID: 31329406 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic gamma-Fe2O3 nanoparticles. Rubio-Retama J; Zafeiropoulos NE; Serafinelli C; Rojas-Reyna R; Voit B; Cabarcos EL; Stamm M Langmuir; 2007 Sep; 23(20):10280-5. PubMed ID: 17718580 [TBL] [Abstract][Full Text] [Related]
15. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions. Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782 [TBL] [Abstract][Full Text] [Related]
16. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Meid J; Friedrich T; Tieke B; Lindner P; Richtering W Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241 [TBL] [Abstract][Full Text] [Related]
17. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix. Musch J; Schneider S; Lindner P; Richtering W J Phys Chem B; 2008 May; 112(20):6309-14. PubMed ID: 18444673 [TBL] [Abstract][Full Text] [Related]
18. Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties. Gawlitza K; Turner ST; Polzer F; Wellert S; Karg M; Mulvaney P; von Klitzing R Phys Chem Chem Phys; 2013 Oct; 15(37):15623-31. PubMed ID: 23942792 [TBL] [Abstract][Full Text] [Related]
19. Small-angle X-ray scattering from a dual-component organogel to exhibit a charge transfer interaction. Jeong Y; Friggeri A; Akiba I; Masunaga H; Sakurai K; Sakurai S; Okamoto S; Inoue K; Shinkai S J Colloid Interface Sci; 2005 Mar; 283(1):113-22. PubMed ID: 15694431 [TBL] [Abstract][Full Text] [Related]
20. Degradable and Thermosensitive Microgels with Tannic Acid as the Sole Cross-Linker. Xue J; Ji W; Dong S; Zhang Z; Gao J; Yang P; Nie J; Du B Langmuir; 2019 Dec; 35(49):16353-16365. PubMed ID: 31718193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]