These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Enhanced electro-active phase in a luminescent P(VDF-HFP)/Zn Adhikary P; Mandal D Phys Chem Chem Phys; 2017 Jul; 19(27):17789-17798. PubMed ID: 28657089 [TBL] [Abstract][Full Text] [Related]
9. High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO Chen X; Li X; Shao J; An N; Tian H; Wang C; Han T; Wang L; Lu B Small; 2017 Jun; 13(23):. PubMed ID: 28452402 [TBL] [Abstract][Full Text] [Related]
10. Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF-HFP) nanofibers. Mandal D; Henkel K; Schmeisser D Phys Chem Chem Phys; 2014 Jun; 16(22):10403-7. PubMed ID: 24733435 [TBL] [Abstract][Full Text] [Related]
11. The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester. Adhikary P; Garain S; Mandal D Phys Chem Chem Phys; 2015 Mar; 17(11):7275-81. PubMed ID: 25693657 [TBL] [Abstract][Full Text] [Related]
12. Dominant Role of Young's Modulus for Electric Power Generation in PVDF⁻BaTiO₃ Composite-Based Piezoelectric Nanogenerator. Kim HS; Lee DW; Kim DH; Kong DS; Choi J; Lee M; Murillo G; Jung JH Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274363 [TBL] [Abstract][Full Text] [Related]
13. Nanogenerator power output: influence of particle size and crystallinity of BaTiO Schädli GN; Büchel R; Pratsinis SE Nanotechnology; 2017 Jul; 28(27):275705. PubMed ID: 28612759 [TBL] [Abstract][Full Text] [Related]
14. Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. Park KI; Xu S; Liu Y; Hwang GT; Kang SJ; Wang ZL; Lee KJ Nano Lett; 2010 Dec; 10(12):4939-43. PubMed ID: 21050010 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Flexible Poly(vinylidene fluoride-trifluorethylene) Piezoelectric Nanogenerators by SnSe Nanosheet Doping and Solvent Treatment. Zhai W; Nie J; Zhu L ACS Appl Mater Interfaces; 2021 Jul; 13(27):32278-32285. PubMed ID: 34190532 [TBL] [Abstract][Full Text] [Related]
16. Utilizing a High-Performance Piezoelectric Nanocomposite as a Self-Activating Component in Piezotronic Artificial Mechanoreceptors. Do TD; Trung TQ; Le Mong A; Huynh HQ; Lee D; Hong SJ; Vu DT; Kim M; Lee NE ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38604985 [TBL] [Abstract][Full Text] [Related]
17. Improved Piezoelectric Sensing Performance of P(VDF-TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes. Hu X; Yan X; Gong L; Wang F; Xu Y; Feng L; Zhang D; Jiang Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):7379-7386. PubMed ID: 30676033 [TBL] [Abstract][Full Text] [Related]
18. Wearable Piezoelectric Nanogenerators Based on Core-Shell Ga-PZT@GaO Zeng S; Zhang M; Jiang L; Wang Z; Gu H; Xiong J; Du Y; Ren L ACS Appl Mater Interfaces; 2022 Feb; 14(6):7990-8000. PubMed ID: 35107968 [TBL] [Abstract][Full Text] [Related]
19. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO Suo G; Yu Y; Zhang Z; Wang S; Zhao P; Li J; Wang X ACS Appl Mater Interfaces; 2016 Dec; 8(50):34335-34341. PubMed ID: 27936326 [TBL] [Abstract][Full Text] [Related]
20. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Wang X; Yang B; Liu J; Zhu Y; Yang C; He Q Sci Rep; 2016 Nov; 6():36409. PubMed ID: 27805065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]