BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24517416)

  • 1. The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond.
    Szabová J; Yubuki N; Leander BS; Triemer RE; Hampl V
    BMC Evol Biol; 2014 Feb; 14():25. PubMed ID: 24517416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new divergent type of eukaryotic methionine adenosyltransferase is present in multiple distantly related secondary algal lineages.
    Sanchez-Perez GF; Hampl V; Simpson AG; Roger AJ
    J Eukaryot Microbiol; 2008; 55(5):374-81. PubMed ID: 19017057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanded phylogenies of canonical and non-canonical types of methionine adenosyltransferase reveal a complex history of these gene families in eukaryotes.
    Kamikawa R; Sanchez-Perez GF; Sako Y; Roger AJ; Inagaki Y
    Mol Phylogenet Evol; 2009 Nov; 53(2):565-70. PubMed ID: 19577655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.
    Markunas CM; Triemer RE
    J Eukaryot Microbiol; 2016 May; 63(3):326-39. PubMed ID: 26566594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida).
    Yamaguchi A; Yubuki N; Leander BS
    BMC Evol Biol; 2012 Mar; 12():29. PubMed ID: 22401606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids.
    Turmel M; Gagnon MC; O'Kelly CJ; Otis C; Lemieux C
    Mol Biol Evol; 2009 Mar; 26(3):631-48. PubMed ID: 19074760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: coexistence of mutually exclusive transcripts predates functional rescue.
    Szabová J; Ruzicka P; Verner Z; Hampl V; Lukes J
    Mol Biol Evol; 2011 Aug; 28(8):2371-8. PubMed ID: 21385829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts.
    Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ
    Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids.
    Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H
    BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.
    Hrdá Š; Fousek J; Szabová J; Hampl V; Vlček Č
    PLoS One; 2012; 7(3):e33746. PubMed ID: 22448269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic Relationships and Morphological Character Evolution of Photosynthetic Euglenids (Excavata) Inferred from Taxon-rich Analyses of Five Genes.
    Karnkowska A; Bennett MS; Watza D; Kim JI; Zakryś B; Triemer RE
    J Eukaryot Microbiol; 2015; 62(3):362-73. PubMed ID: 25377266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences.
    Breglia SA; Slamovits CH; Leander BS
    J Eukaryot Microbiol; 2007; 54(1):86-92. PubMed ID: 17300525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Did trypanosomatid parasites have photosynthetic ancestors?
    Leander BS
    Trends Microbiol; 2004 Jun; 12(6):251-8. PubMed ID: 15165602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Genome of Prasinophyte Alga Pyramimonas parkeae.
    Hrdá Š; Hroudová M; Vlček Č; Hampl V
    J Eukaryot Microbiol; 2017 May; 64(3):360-369. PubMed ID: 27678215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.
    Ponce-Toledo RI; Moreira D; López-García P; Deschamps P
    Mol Biol Evol; 2018 Sep; 35(9):2198-2204. PubMed ID: 29924337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyses of environmental sequences and two regions of chloroplast genomes revealed the presence of new clades of photosynthetic euglenids in marine environments.
    Lukešová S; Karlicki M; Tomečková Hadariová L; Szabová J; Karnkowska A; Hampl V
    Environ Microbiol Rep; 2020 Feb; 12(1):78-91. PubMed ID: 31845515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.
    Pombert JF; James ER; Janouškovec J; Keeling PJ
    PLoS One; 2012; 7(12):e53433. PubMed ID: 23300929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Origin of Euglena.
    Zakryś B; Milanowski R; Karnkowska A
    Adv Exp Med Biol; 2017; 979():3-17. PubMed ID: 28429314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta).
    Linton EW; Karnkowska-Ishikawa A; Kim JI; Shin W; Bennett MS; Kwiatowski J; Zakryś B; Triemer RE
    Protist; 2010 Oct; 161(4):603-19. PubMed ID: 20434949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.