BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 24517488)

  • 1. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells.
    Katz SS; Gimble FS; Storici F
    PLoS One; 2014; 9(2):e88840. PubMed ID: 24558436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast.
    Storici F; Durham CL; Gordenin DA; Resnick MA
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14994-9. PubMed ID: 14630945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of recombination between diverged sequences in a mammalian genome by a double-strand break.
    Bhattacharjee V; Lin Y; Waldman BC; Waldman AS
    Cell Mol Life Sci; 2014 Jun; 71(12):2359-71. PubMed ID: 24257896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalent role of homologous recombination in the repair of specific double-strand breaks in
    Yáñez-Cuna FO; Aguilar-Gómez D; Dávalos A; Romero D
    Front Microbiol; 2024; 15():1333194. PubMed ID: 38481790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae.
    Kuijpers NG; Chroumpi S; Vos T; Solis-Escalante D; Bosman L; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2013 Dec; 13(8):769-81. PubMed ID: 24028550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discriminatory suppression of homologous recombination by p53.
    Yun S; Lie-A-Cheong C; Porter AC
    Nucleic Acids Res; 2004; 32(22):6479-89. PubMed ID: 15601996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The priority of yeast to select among various DNA options to repair genome breaks by homologous recombination.
    Tartik M
    Mol Biol Rep; 2024 Jan; 51(1):99. PubMed ID: 38206425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated System for Precise Genome Modification in Escherichia coli.
    Tas H; Nguyen CT; Patel R; Kim NH; Kuhlman TE
    PLoS One; 2015; 10(9):e0136963. PubMed ID: 26332675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable expression of red fluorescent protein-blasticidin deaminase fusion gene (rfp-bsd) as a selectable marker for DNA transfection in Babesia ovata.
    Arayaskul N; Asada M; Fathi A; Ariefta NR; Komatsu K; Suganuma K; Inoue N; Kawazu SI
    J Vet Med Sci; 2024 May; ():. PubMed ID: 38749739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells.
    Nissim L; Perli SD; Fridkin A; Perez-Pinera P; Lu TK
    Mol Cell; 2014 May; 54(4):698-710. PubMed ID: 24837679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing using a versatile vector-based CRISPR/Cas9 system in Fusarium species.
    Shinkado S; Saito H; Yamazaki M; Kotera S; Arazoe T; Arie T; Kamakura T
    Sci Rep; 2022 Sep; 12(1):16243. PubMed ID: 36171473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copy number-dependent DNA methylation of the Pyricularia oryzae MAGGY retrotransposon is triggered by DNA damage.
    Van Vu B; Nguyen Q; Kondo-Takeoka Y; Murata T; Kadotani N; Thi Nguyen G; Arazoe T; Ohsato S; Nakayashiki H
    Commun Biol; 2021 Mar; 4(1):351. PubMed ID: 33742058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus.
    Yamato T; Handa A; Arazoe T; Kuroki M; Nozaka A; Kamakura T; Ohsato S; Arie T; Kuwata S
    Sci Rep; 2019 May; 9(1):7427. PubMed ID: 31092866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar.
    Bruni GO; Zhong K; Lee SC; Wang P
    Fungal Genet Biol; 2019 Mar; 124():1-7. PubMed ID: 30562583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei.
    Ouedraogo JP; Arentshorst M; Nikolaev I; Barends S; Ram AF
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10083-95. PubMed ID: 26272087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific DNA double-strand break generated by I-SceI endonuclease enhances ectopic homologous recombination in Pyricularia oryzae.
    Arazoe T; Younomaru T; Ohsato S; Kimura M; Arie T; Kuwata S
    FEMS Microbiol Lett; 2014 Mar; 352(2):221-9. PubMed ID: 24517488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease.
    Nickoloff JA; Brenneman MA
    Methods Mol Biol; 2004; 262():35-52. PubMed ID: 14769955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI.
    Lukacsovich T; Yang D; Waldman AS
    Nucleic Acids Res; 1994 Dec; 22(25):5649-57. PubMed ID: 7838718
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.