BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24517515)

  • 21. Serine 187 is a crucial residue for allosteric regulation of Corynebacterium glutamicum 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase.
    Liao HF; Lin LL; Chien HR; Hsu WH
    FEMS Microbiol Lett; 2001 Jan; 194(1):59-64. PubMed ID: 11150666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains.
    Gerigk M; Bujnicki R; Ganpo-Nkwenkwa E; Bongaerts J; Sprenger G; Takors R
    Biotechnol Bioeng; 2002 Dec; 80(7):746-54. PubMed ID: 12402320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis.
    Yokoyama R; Kleven B; Gupta A; Wang Y; Maeda HA
    Curr Opin Plant Biol; 2022 Jun; 67():102219. PubMed ID: 35550985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenylalanine hydroxylase and isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in relationship to the phylogenetic position of Pseudomonas acidovorans (Ps. sp. ATCC 11299a).
    Berry A; Johnson JL; Jensen RA
    Arch Microbiol; 1985 Feb; 141(1):32-9. PubMed ID: 2859843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli.
    Ger YM; Chen SL; Chiang HJ; Shiuan D
    J Biochem; 1994 Nov; 116(5):986-90. PubMed ID: 7896760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt).
    Zhou H; Liao X; Wang T; Du G; Chen J
    Bioresour Technol; 2010 Jun; 101(11):4151-6. PubMed ID: 20137911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and characterization of genes responsible for m-fluoro-D,L-phenylalanine resistance in Brevibacterium lactofermentum.
    Ito H; Sato K; Matsui K; Sano K; Nakamori S; Tanaka T; Enei H
    Agric Biol Chem; 1990 Mar; 54(3):707-13. PubMed ID: 1369437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate ambiguity of 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae in the context of its membership in a protein family containing a subset of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases.
    Subramaniam PS; Xie G; Xia T; Jensen RA
    J Bacteriol; 1998 Jan; 180(1):119-27. PubMed ID: 9422601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and expression of mutagenesis strain of aroG gene from Escherichia coli K-12.
    Lin S; Liang R; Meng X; OuYang H; Yan H; Wang Y; Jones GS
    Int J Biol Macromol; 2014 Jul; 68():173-7. PubMed ID: 24769085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli.
    Ray JM; Yanofsky C; Bauerle R
    J Bacteriol; 1988 Dec; 170(12):5500-6. PubMed ID: 2903857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chorismate mutase and 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the methylotrophic actinomycete Amycolatopsis methanolica.
    Euverink GJ; Hessels GI; Franke C; Dijkhuizen L
    Appl Environ Microbiol; 1995 Nov; 61(11):3796-803. PubMed ID: 8526488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells.
    Ogino T; Garner C; Markley JL; Herrmann KM
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5828-32. PubMed ID: 6136965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered glucose transport and shikimate pathway product yields in E. coli.
    Yi J; Draths KM; Li K; Frost JW
    Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of pps and aroGfbr overexpression on L-tryptophan production in Corynebacterium pekinense].
    Zang C; Zhao Z; Wang Y; Zhang Y; Ding J
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):24-32. PubMed ID: 24783851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).
    Hall GC; Flick MB; Jensen RA
    J Bacteriol; 1983 Jan; 153(1):423-8. PubMed ID: 6129240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of tyrosine and phenylalanine biosynthesis in Salmonella.
    Sprinson DB; Gollub EG; Hu RC; Liu KP
    Acta Microbiol Acad Sci Hung; 1976; 23(2):167-70. PubMed ID: 9783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities.
    Patnaik R; Spitzer RG; Liao JC
    Biotechnol Bioeng; 1995 May; 46(4):361-70. PubMed ID: 18623323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.