These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24517821)

  • 1. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.
    Wang Z; Bao L; Hao X; Ju Y
    Rev Sci Instrum; 2014 Jan; 85(1):015116. PubMed ID: 24517821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.
    Rosendahl S; Brown E; Cristescu I; Fieguth A; Huhmann C; Lebeda O; Murra M; Weinheimer C
    Rev Sci Instrum; 2015 Nov; 86(11):115104. PubMed ID: 26628169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PandaX-4T cryogenic distillation system for removing krypton from xenon.
    Yan R; Wang Z; Cui X; Ju Y; Sha H; Li S; Huang P; Wang X; Ma W; Fan Y; Zhao L; Liu J; Ji X; Zhou J; Shang C; Liu L
    Rev Sci Instrum; 2021 Dec; 92(12):123303. PubMed ID: 34972391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially uniform calibration of a liquid xenon detector at low energies using (83m)Kr.
    Manalaysay A; Undagoitia TM; Askin A; Baudis L; Behrens A; Ferella AD; Kish A; Lebeda O; Santorelli R; Vénos D; Vollhardt A
    Rev Sci Instrum; 2010 Jul; 81(7):073303. PubMed ID: 20687713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors.
    Aprile E; Yoon T; Loose A; Goetzke LW; Zelevinsky T
    Rev Sci Instrum; 2013 Sep; 84(9):093105. PubMed ID: 24089814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of krypton-85 and krypton-81 in a few liters of air.
    Tu LY; Yang GM; Cheng CF; Liu GL; Zhang XY; Hu SM
    Anal Chem; 2014 Apr; 86(8):4002-7. PubMed ID: 24641193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic framework with optimally selective xenon adsorption and separation.
    Banerjee D; Simon CM; Plonka AM; Motkuri RK; Liu J; Chen X; Smit B; Parise JB; Haranczyk M; Thallapally PK
    Nat Commun; 2016 Jun; 7():ncomms11831. PubMed ID: 27291101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic exploration of xenon/krypton separation based on a high-throughput screening.
    Ren E; Coudert FX
    Faraday Discuss; 2021 Oct; 231(0):201-223. PubMed ID: 34195736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The far from equilibrium structure of argon clusters doped with krypton or xenon.
    Lindblad A; Bergersen H; Rander T; Lundwall M; Ohrwall G; Tchaplyguine M; Svensson S; Björneholm O
    Phys Chem Chem Phys; 2006 Apr; 8(16):1899-905. PubMed ID: 16633676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities.
    Lee SJ; Yoon TU; Kim AR; Kim SY; Cho KH; Hwang YK; Yeon JW; Bae YS
    J Hazard Mater; 2016 Dec; 320():513-520. PubMed ID: 27597151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASSESSMENT OF TISSUE RADIATION DOSE IN CLINICAL USE OF RADIOACTIVE INERT GASES, WITH EXAMPLES OF ABSORBED DOSES FROM 3-H2, 85-KR AND 133-XE.
    LASSEN NA
    Minerva Nucl; 1964; 8():211-7. PubMed ID: 14177178
    [No Abstract]   [Full Text] [Related]  

  • 13. Radioactive krypton and xenon trapping by cryogenic technics.
    Mantel J; Cook KJ; Corrigan KE
    Radiology; 1968 Mar; 90(3):590-1. PubMed ID: 5642301
    [No Abstract]   [Full Text] [Related]  

  • 14. Saturation curve in gases of high atomic number at pressures up to 8 atm. I. Krypton and xenon.
    Boag JW; Barish J; Seelentag WW
    Med Phys; 1975; 2(5):245-50. PubMed ID: 1186629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore Size Control
    Jia Z; Yan Z; Zhang J; Zou Y; Qi Y; Li X; Li Y; Guo X; Yang C; Ma L
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1127-1134. PubMed ID: 33371663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes.
    Anderson R; Schweitzer B; Wu T; Carreon MA; Gómez-Gualdrón DA
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):582-592. PubMed ID: 29256241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Xe/Kr Separation Based on a Lanthanide-Organic Framework with One-Dimensional Local Positively Charged Rhomboid Channels.
    Wang X; Ma F; Xiong S; Bai Z; Zhang Y; Li G; Chen J; Yuan M; Wang Y; Dai X; Chai Z; Wang S
    ACS Appl Mater Interfaces; 2022 May; 14(19):22233-22241. PubMed ID: 35507505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switching Kr/Xe selectivity with temperature in a metal-organic framework.
    Fernandez CA; Liu J; Thallapally PK; Strachan DM
    J Am Chem Soc; 2012 Jun; 134(22):9046-9. PubMed ID: 22591325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants.
    Liu J; Thallapally PK; Strachan D
    Langmuir; 2012 Aug; 28(31):11584-9. PubMed ID: 22799439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a low ionization potential dopant in a kinestatic charge detector: experimental findings.
    Wagenaar DJ; DiBianca FA; Tenney CR; Reed MS; Vance JE
    Med Phys; 1991; 18(2):227-35. PubMed ID: 2046609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.