These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 24518019)
1. [Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai]. Li J; Gu JZ; Mao SH; Xiao WJ; Jin HM; Zheng YX; Wang YM; Hu JY Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Dec; 34(12):1198-202. PubMed ID: 24518019 [TBL] [Abstract][Full Text] [Related]
2. [A preliminary study on the effects of meteorological factors on intracerebral hemorrhage death using the BP neural network model]. Gao HL; Lan L; Qiao DJ; Zhao N; Yang JQ; Shao B; Jiao Z; Li H; Wang BY Zhonghua Liu Xing Bing Xue Za Zhi; 2012 Sep; 33(9):937-40. PubMed ID: 23290807 [TBL] [Abstract][Full Text] [Related]
3. [Study on meteorological factors-based neural network model of malaria]. Gao CY; Xiong HY; Yi D; Chai GJ; Yang XW; Liu L Zhonghua Liu Xing Bing Xue Za Zhi; 2003 Sep; 24(9):831-4. PubMed ID: 14521780 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants. Tang N; Yuan M; Chen Z; Ma J; Sun R; Yang Y; He Q; Guo X; Hu S; Zhou J Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900920 [TBL] [Abstract][Full Text] [Related]
5. [Establishment of an artificial neural network model for analysis of the influence of climate factors on the density of Aedes albopictus]. Yu DX; Lin LF; Luo L; Zhou W; Gao LL; Chen Q; Yu SY Nan Fang Yi Ke Da Xue Xue Bao; 2010 Jul; 30(7):1604-5, 1609. PubMed ID: 20650778 [TBL] [Abstract][Full Text] [Related]
6. Association of meteorological factors with infectious diarrhea incidence in Guangzhou, southern China: A time-series study (2006-2017). Wang H; Di B; Zhang T; Lu Y; Chen C; Wang D; Li T; Zhang Z; Yang Z Sci Total Environ; 2019 Jul; 672():7-15. PubMed ID: 30954825 [TBL] [Abstract][Full Text] [Related]
7. [Application of artificial neural networks on the prediction of surface ozone concentrations]. Shen LL; Wang YX; Duan L Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942 [TBL] [Abstract][Full Text] [Related]
8. [Application of artificial neural networks in forecasting the number of circulatory system diseases death toll]. Zhang Y; Shao Y; Shang K; Wang S; Wang J Wei Sheng Yan Jiu; 2014 Sep; 43(5):774-8. PubMed ID: 25438533 [TBL] [Abstract][Full Text] [Related]
9. Forecasting of bioaerosol concentration by a Back Propagation neural network model. Li X; Cheng X; Wu W; Wang Q; Tong Z; Zhang X; Deng D; Li Y Sci Total Environ; 2020 Jan; 698():134315. PubMed ID: 31783453 [TBL] [Abstract][Full Text] [Related]
10. Bacillary dysentery and meteorological factors in northeastern China: a historical review based on classification and regression trees. Guan P; Huang D; Guo J; Wang P; Zhou B Jpn J Infect Dis; 2008 Sep; 61(5):356-60. PubMed ID: 18806341 [TBL] [Abstract][Full Text] [Related]
11. Correlation analysis for the attack of bacillary dysentery and meteorological factors based on the Chinese medicine theory of Yunqi and the medical-meteorological forecast model. Ma SL; Tang QL; Liu HW; He J; Gao SH Chin J Integr Med; 2013 Mar; 19(3):182-6. PubMed ID: 22903445 [TBL] [Abstract][Full Text] [Related]
12. [Application of wavelet neural networks model to forecast incidence of syphilis]. Zhou XF; Feng ZJ; Yang WZ; Li XS Sichuan Da Xue Xue Bao Yi Xue Ban; 2011 Jul; 42(4):544-7. PubMed ID: 21866645 [TBL] [Abstract][Full Text] [Related]
13. Influencing factors and prediction of ambient Peroxyacetyl nitrate concentration in Beijing, China. Zhang B; Zhao B; Zuo P; Huang Z; Zhang J J Environ Sci (China); 2019 Mar; 77():189-197. PubMed ID: 30573082 [TBL] [Abstract][Full Text] [Related]
14. Effect of meteorological factors on incidence of tuberculosis: A 15-year retrospective study based on Chinese medicine theory of five circuits and six qi. Zhang X; Hao Y; Fei ZY; He J Chin J Integr Med; 2015 Oct; 21(10):751-8. PubMed ID: 26525546 [TBL] [Abstract][Full Text] [Related]
16. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models. Taşpınar F J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553 [TBL] [Abstract][Full Text] [Related]
17. Epidemiological characteristics of bacillary dysentery from 2009 to 2016 and its incidence prediction model based on meteorological factors. Meng Q; Liu X; Xie J; Xiao D; Wang Y; Deng D Environ Health Prev Med; 2019 Dec; 24(1):82. PubMed ID: 31883513 [TBL] [Abstract][Full Text] [Related]
18. Correlation Analysis of Rubella Incidence and Meteorological Variables Based on Chinese Medicine Theory of Yunqi. Zhang X; Ma SL; Liu ZD; He J Chin J Integr Med; 2019 Dec; 25(12):911-916. PubMed ID: 30467697 [TBL] [Abstract][Full Text] [Related]
19. Impact of meteorological factors on the incidence of bacillary dysentery in Beijing, China: A time series analysis (1970-2012). Yan L; Wang H; Zhang X; Li MY; He J PLoS One; 2017; 12(8):e0182937. PubMed ID: 28796834 [TBL] [Abstract][Full Text] [Related]
20. Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland). Grinn-Gofroń A; Strzelczak A Int J Biometeorol; 2008 Nov; 52(8):859-68. PubMed ID: 18810504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]