These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 24518019)
21. [Time-series analysis on the malaria morbidity affected by meteorological factors in Guangdong province]. Luo Y; Zhang YH; Pei FQ; Liu T; Zeng WL; Xiao JP; Ma WJ Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Oct; 46(10):892-7. PubMed ID: 23363862 [TBL] [Abstract][Full Text] [Related]
22. Predicting the incidence of infectious diarrhea with symptom surveillance data using a stacking-based ensembled model. Wang P; Zhang W; Wang H; Shi C; Li Z; Wang D; Luo L; Du Z; Hao Y BMC Infect Dis; 2024 Feb; 24(1):265. PubMed ID: 38408967 [TBL] [Abstract][Full Text] [Related]
23. Prediction of ambient PM10 and toxic metals using artificial neural networks. Chelani AB; Gajghate DG; Hasan MZ J Air Waste Manag Assoc; 2002 Jul; 52(7):805-10. PubMed ID: 12139345 [TBL] [Abstract][Full Text] [Related]
24. Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China. Fang X; Liu W; Ai J; He M; Wu Y; Shi Y; Shen W; Bao C BMC Infect Dis; 2020 Mar; 20(1):222. PubMed ID: 32171261 [TBL] [Abstract][Full Text] [Related]
25. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China. Liu Y; Xi DG; Li ZL PLoS One; 2015; 10(3):e0119082. PubMed ID: 25768650 [TBL] [Abstract][Full Text] [Related]
26. Application of short-term water demand prediction model to Seoul. Joo CN; Koo JY; Yu MJ Water Sci Technol; 2002; 46(6-7):255-61. PubMed ID: 12380999 [TBL] [Abstract][Full Text] [Related]
27. Meteorological Factors Affecting Infectious Diarrhea in Different Climate Zones of China. Yang M; Chen C; Zhang X; Du Y; Jiang D; Yan D; Liu X; Ding C; Lan L; Lei H; Yang S Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141780 [TBL] [Abstract][Full Text] [Related]
28. Effect of meteorological factors on scarlet fever incidence in Guangzhou City, Southern China, 2006-2017. Lu JY; Chen ZQ; Liu YH; Liu WH; Ma Y; Li TG; Zhang ZB; Yang ZC Sci Total Environ; 2019 May; 663():227-235. PubMed ID: 30711589 [TBL] [Abstract][Full Text] [Related]
29. Prediction model for dengue fever based on interactive effects between multiple meteorological factors in Guangdong, China (2008-2016). Zhu B; Wang L; Wang H; Cao Z; Zha L; Li Z; Ye Z; Zhang J; Song H; Sun Y PLoS One; 2019; 14(12):e0225811. PubMed ID: 31815950 [TBL] [Abstract][Full Text] [Related]
30. Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand. Kiang R; Adimi F; Soika V; Nigro J; Singhasivanon P; Sirichaisinthop J; Leemingsawat S; Apiwathnasorn C; Looareesuwan S Geospat Health; 2006 Nov; 1(1):71-84. PubMed ID: 18686233 [TBL] [Abstract][Full Text] [Related]
31. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks. Abderrahim H; Chellali MR; Hamou A Environ Sci Pollut Res Int; 2016 Jan; 23(2):1634-41. PubMed ID: 26381787 [TBL] [Abstract][Full Text] [Related]
32. Using multiple linear regression and BP neural network to predict critical meteorological conditions of expressway bridge pavement icing. Han S; Xu J; Yan M; Liu Z PLoS One; 2022; 17(2):e0263539. PubMed ID: 35120189 [TBL] [Abstract][Full Text] [Related]
33. Modelling the effects of meteorological parameters on water temperature using artificial neural networks. Temizyurek M; Dadaser-Celik F Water Sci Technol; 2018 Mar; 77(5-6):1724-1733. PubMed ID: 29595175 [TBL] [Abstract][Full Text] [Related]
34. Meteorological Factors Related to Emergency Admission of Elderly Stroke Patients in Shanghai: Analysis with a Multilayer Perceptron Neural Network. Meng G; Tan Y; Fang M; Yang H; Liu X; Zhao Y Med Sci Monit; 2015 Nov; 21():3600-7. PubMed ID: 26590182 [TBL] [Abstract][Full Text] [Related]
35. Rotavirus activity and meteorological variations in an Asian subtropical city, Hong Kong, 1995-2009. Chan MC; Mok HY; Lee TC; Nelson EA; Leung TF; Tam WW; Chan PK J Med Virol; 2013 Nov; 85(11):2026-33. PubMed ID: 23852875 [TBL] [Abstract][Full Text] [Related]
36. An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations. Chronopoulos KI; Tsiros IX; Dimopoulos IF; Alvertos N J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Dec; 43(14):1752-7. PubMed ID: 18988114 [TBL] [Abstract][Full Text] [Related]
37. Prediction of emergency department visits for respiratory symptoms using an artificial neural network. Bibi H; Nutman A; Shoseyov D; Shalom M; Peled R; Kivity S; Nutman J Chest; 2002 Nov; 122(5):1627-32. PubMed ID: 12426263 [TBL] [Abstract][Full Text] [Related]
38. Prediction of ozone concentrations in Oporto city with statistical approaches. Sousa SI; Martins FG; Pereira MC; Alvim-Ferraz MC Chemosphere; 2006 Aug; 64(7):1141-9. PubMed ID: 16405949 [TBL] [Abstract][Full Text] [Related]
39. A correlation study between meteorological parameters and COVID-19 pandemic in Mumbai, India. Kumar G; Kumar RR Diabetes Metab Syndr; 2020; 14(6):1735-1742. PubMed ID: 32919321 [TBL] [Abstract][Full Text] [Related]
40. Short-term effects of meteorological factors on hand, foot and mouth disease among children in Shenzhen, China: Non-linearity, threshold and interaction. Zhang Z; Xie X; Chen X; Li Y; Lu Y; Mei S; Liao Y; Lin H Sci Total Environ; 2016 Jan; 539():576-582. PubMed ID: 26386448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]