BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24518218)

  • 1. Controlled release of an anti-cancer drug from DNA structured nano-films.
    Cho Y; Lee JB; Hong J
    Sci Rep; 2014 Feb; 4():4078. PubMed ID: 24518218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications.
    Zhang H; Qu X; Chen H; Kong H; Ding R; Chen D; Zhang X; Pei H; Santos HA; Hai M; Weitz DA
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28941223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PMMA/polysaccharides nanofilm loaded with adenosine deaminase inhibitor for targeted anti-inflammatory drug delivery.
    Redolfi Riva E; Desii A; Sartini S; La Motta C; Mazzolai B; Mattoli V
    Langmuir; 2013 Oct; 29(43):13190-7. PubMed ID: 24073802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA origami as an in vivo drug delivery vehicle for cancer therapy.
    Zhang Q; Jiang Q; Li N; Dai L; Liu Q; Song L; Wang J; Li Y; Tian J; Ding B; Du Y
    ACS Nano; 2014 Jul; 8(7):6633-43. PubMed ID: 24963790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of pH-sensitive zwitterionic nano micelles and drug controlled release for enhancing cellular uptake.
    Wu L; Ni C; Zhang L; Shi G
    J Biomater Sci Polym Ed; 2016; 27(7):643-56. PubMed ID: 26813767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP responsive DNA nanogels grown on biocompatible branches for anticancer drug delivery.
    Zhao M; Zhang Y; Yuan S; Xu X; Wu Z; Wu Z; Qi X
    Soft Matter; 2019 May; 15(18):3655-3658. PubMed ID: 31012474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured silica materials as drug-delivery systems for Doxorubicin: single molecule and cellular studies.
    Lebold T; Jung C; Michaelis J; Bräuchle C
    Nano Lett; 2009 Aug; 9(8):2877-83. PubMed ID: 19572735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery.
    Poon Z; Lee JB; Morton SW; Hammond PT
    Nano Lett; 2011 May; 11(5):2096-103. PubMed ID: 21524115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationally Designed DNA-Origami Nanomaterials for Drug Delivery In Vivo.
    Jiang Q; Liu S; Liu J; Wang ZG; Ding B
    Adv Mater; 2019 Nov; 31(45):e1804785. PubMed ID: 30285296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defined covalent attachment of three cancer drugs to DNA origami increases cytotoxicity at nanomolar concentration.
    Navarro N; Aviñó A; Domènech Ò; Borrell JH; Eritja R; Fàbrega C
    Nanomedicine; 2024 Jan; 55():102722. PubMed ID: 38007069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Origami-Anthraquinone Hybrid Nanostructures for In Vivo Quantitative Monitoring of the Progression of Tumor Hypoxia Affected by Chemotherapy.
    Zeng Y; Chang P; Ma J; Li K; Zhang C; Guo Y; Li H; Zhu Q; Liu H; Wang W; Chen Y; Chen D; Cao X; Zhan Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6387-6403. PubMed ID: 35077131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering DNA self-assemblies as templates for functional nanostructures.
    Wang ZG; Ding B
    Acc Chem Res; 2014 Jun; 47(6):1654-62. PubMed ID: 24588320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell noble-metal@zeolitic-imidazolate-framework nanocarriers with high cancer treatment efficiency in vitro.
    He L; Pang K; Liu W; Tian Y; Chang L; Liu X; Zhao M; Liu Y; Li Y; Jiang X; Song R; Liu Y
    J Mater Chem B; 2019 Feb; 7(7):1050-1055. PubMed ID: 32254772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA nanostructure-based imaging probes and drug carriers.
    Zhan P; Jiang Q; Wang ZG; Li N; Yu H; Ding B
    ChemMedChem; 2014 Sep; 9(9):2013-20. PubMed ID: 25045126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates.
    Zhang L; Li Y; Jin Z; Yu JC; Chan KM
    Nanoscale; 2015 Aug; 7(29):12614-24. PubMed ID: 26147639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-inspired multilayer nanofilms: science, technology and medicine.
    Haynie DT; Zhang L; Zhao W; Rudra JS
    Nanomedicine; 2006 Sep; 2(3):150-7. PubMed ID: 17292137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmed degradation of DNA multilayer films.
    Lee L; Johnston AP; Caruso F
    Small; 2014 Jul; 10(14):2902-9. PubMed ID: 24664540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Size-Tunable Hollow Polypyrrole Nanostructures and Their Assembly into Folate-Targeting and pH-Responsive Anticancer Drug-Delivery Agents.
    Chen J; Li X; Sun Y; Hu Y; Peng Y; Li Y; Yin G; Liu H; Xu J; Zhong S
    Chemistry; 2017 Dec; 23(68):17279-17289. PubMed ID: 28913948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications.
    Park S; Han U; Choi D; Hong J
    Biomater Res; 2018; 22():29. PubMed ID: 30275972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-Triggered Drug Release of Self-Assembled 3D DNA Nanostructures for Fluorescence Imaging and Tumor Therapy.
    Jiang Y; Zhou H; Zhao W; Zhang S
    Anal Chem; 2022 May; 94(18):6771-6780. PubMed ID: 35471011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.