These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24518323)

  • 61. Tartaric acid pathways in Vitis vinifera L. (cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions.
    Cholet C; Claverol S; Claisse O; Rabot A; Osowsky A; Dumot V; Ferrari G; Gény L
    BMC Plant Biol; 2016 Jun; 16(1):144. PubMed ID: 27350040
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Relating Water Deficiency to Berry Texture, Skin Cell Wall Composition, and Expression of Remodeling Genes in Two Vitis vinifera L. Varieties.
    Fernandes JC; Cobb F; Tracana S; Costa GJ; Valente I; Goulao LF; Amâncio S
    J Agric Food Chem; 2015 Apr; 63(15):3951-61. PubMed ID: 25828510
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation.
    Mathieu S; Terrier N; Procureur J; Bigey F; Günata Z
    J Exp Bot; 2005 Oct; 56(420):2721-31. PubMed ID: 16131507
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Systematic analysis reveals O-methyltransferase gene family members involved in flavonoid biosynthesis in grape.
    Lu S; Zhuge Y; Hao T; Liu Z; Zhang M; Fang J
    Plant Physiol Biochem; 2022 Jan; 173():33-45. PubMed ID: 35093693
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation.
    Davies C; Shin R; Liu W; Thomas MR; Schachtman DP
    J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Phenolic composition of Malbec grape skins and seeds from Valle de Uco (Mendoza, Argentina) during ripening. Effect of cluster thinning.
    Fanzone M; Zamora F; Jofré V; Assof M; Peña-Neira Á
    J Agric Food Chem; 2011 Jun; 59(11):6120-36. PubMed ID: 21520971
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism.
    Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R
    J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The crucial role of Φ- and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a.
    Rosales R; Romero I; Escribano MI; Merodio C; Sanchez-Ballesta MT
    Phytochemistry; 2014 Dec; 108():17-25. PubMed ID: 25457499
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phenolic compositions of grapes and wines from cultivar cAbernet Sauvignon produced in Chile and their relationship to commercial value.
    Cáceres A; Peña-Neira A; Galvez A; Obreque-Slier E; López-Solís R; Canals JM
    J Agric Food Chem; 2012 Sep; 60(35):8694-702. PubMed ID: 22860632
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine.
    Ilc T; Halter D; Miesch L; Lauvoisard F; Kriegshauser L; Ilg A; Baltenweck R; Hugueney P; Werck-Reichhart D; Duchêne E; Navrot N
    New Phytol; 2017 Jan; 213(1):264-274. PubMed ID: 27560385
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The reduction of plant sink/source does not systematically improve the metabolic composition of Vitis vinifera white fruit.
    Alem H; Ojeda H; Rigou P; Schneider R; Torregrosa L
    Food Chem; 2021 May; 345():128825. PubMed ID: 33601656
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Wine Resveratrol: From the Ground Up.
    Bavaresco L; Lucini L; Busconi M; Flamini R; De Rosso M
    Nutrients; 2016 Apr; 8(4):222. PubMed ID: 27089363
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.
    George IS; Pascovici D; Mirzaei M; Haynes PA
    Proteomics; 2015 Sep; 15(17):3048-60. PubMed ID: 25959233
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development.
    Jung CJ; Hur YY; Jung SM; Noh JH; Do GR; Park SJ; Nam JC; Park KS; Hwang HS; Choi D; Lee HJ
    J Plant Res; 2014 Mar; 127(2):359-71. PubMed ID: 24374939
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Application of plastic polymers in remediating wine with elevated alkyl-methoxypyrazine levels.
    Botezatu A; Pickering GJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(7):1199-206. PubMed ID: 25895134
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heard it through the grapevine: proteomic perspective on grape and wine.
    Giribaldi M; Giuffrida MG
    J Proteomics; 2010 Aug; 73(9):1647-55. PubMed ID: 20580953
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development.
    Jung CJ; Hur YY; Yu HJ; Noh JH; Park KS; Lee HJ
    PLoS One; 2014; 9(4):e95634. PubMed ID: 24743886
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Accumulation of Glycoconjugates of 3-Methyl-4-hydroxyoctanoic Acid in Fruits, Leaves, and Shoots of Vitis vinifera cv. Monastrell following Foliar Applications of Oak Extract or Oak Lactone.
    Pardo-Garcia AI; Wilkinson KL; Culbert JA; Lloyd ND; Alonso GL; Salinas MR
    J Agric Food Chem; 2015 May; 63(18):4533-8. PubMed ID: 25912091
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In planta and in silico characterization of five sesquiterpene synthases from Vitis vinifera (cv. Shiraz) berries.
    Dueholm B; Drew DP; Sweetman C; Simonsen HT
    Planta; 2019 Jan; 249(1):59-70. PubMed ID: 30136197
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Profiling of the Terpene Metabolome in Carrot Fruits of Wild ( Daucus carota L. ssp. carota) Accessions and Characterization of a Geraniol Synthase.
    Yahyaa M; Ibdah M; Marzouk S; Ibdah M
    J Agric Food Chem; 2018 Mar; 66(10):2378-2386. PubMed ID: 27673494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.