BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24518821)

  • 1. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods.
    Novinec M; Korenč M; Caflisch A; Ranganathan R; Lenarčič B; Baici A
    Nat Commun; 2014; 5():3287. PubMed ID: 24518821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the activity modification space of the cysteine peptidase cathepsin K with novel allosteric modifiers.
    Novinec M; Lenarčič B; Baici A
    PLoS One; 2014; 9(9):e106642. PubMed ID: 25184245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An allosteric site enables fine-tuning of cathepsin K by diverse effectors.
    Novinec M; Rebernik M; Lenarčič B
    FEBS Lett; 2016 Dec; 590(24):4507-4518. PubMed ID: 27859061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigation of conformational variability and allostery in cathepsin K and other related peptidases.
    Novinec M
    PLoS One; 2017; 12(8):e0182387. PubMed ID: 28771551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational flexibility and allosteric regulation of cathepsin K.
    Novinec M; Kovacic L; Lenarcic B; Baici A
    Biochem J; 2010 Jul; 429(2):379-89. PubMed ID: 20450492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsin K: a unique collagenolytic cysteine peptidase.
    Novinec M; Lenarčič B
    Biol Chem; 2013 Sep; 394(9):1163-79. PubMed ID: 23629523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat cathepsin K: Enzymatic specificity and regulation of its collagenolytic activity.
    Lecaille F; Chazeirat T; Bojarski KK; Renault J; Saidi A; Prasad VGNV; Samsonov S; Lalmanach G
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140318. PubMed ID: 31740411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication.
    Rocha GV; Bastos LS; Costa MGS
    Proteins; 2020 Dec; 88(12):1675-1687. PubMed ID: 32683717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Inhibitory Activity by Combining Allosteric Inhibitors Putatively Binding to Different Allosteric Sites on Cathepsin K.
    Sato S; Yamamoto K; Ito M; Nishino K; Otsuka T; Irie K; Nagao M
    Molecules; 2023 May; 28(10):. PubMed ID: 37241936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clusterin is a specific stabilizer and liberator of extracellular cathepsin K.
    Novinec M; Lenarčič B; Baici A
    FEBS Lett; 2012 Apr; 586(7):1062-6. PubMed ID: 22569264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of collagen fiber degradation by cathepsin K.
    Aguda AH; Panwar P; Du X; Nguyen NT; Brayer GD; Brömme D
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17474-9. PubMed ID: 25422423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and kinetic characterization of hyperbolic inhibitors of human cathepsins K and S based on a succinimide scaffold.
    Goričan T; Ciber L; Petek N; Svete J; Novinec M
    Bioorg Chem; 2021 Oct; 115():105213. PubMed ID: 34364050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cathepsin L, a papain-like collagenase without proline specificity.
    Korenč M; Lenarčič B; Novinec M
    FEBS J; 2015 Nov; 282(22):4328-40. PubMed ID: 26306868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis.
    Costa AG; Cusano NE; Silva BC; Cremers S; Bilezikian JP
    Nat Rev Rheumatol; 2011 Jun; 7(8):447-56. PubMed ID: 21670768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A composite docking approach for the identification and characterization of ectosteric inhibitors of cathepsin K.
    Law S; Panwar P; Li J; Aguda AH; Jamroz A; Guido RVC; Brömme D
    PLoS One; 2017; 12(10):e0186869. PubMed ID: 29088253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring small molecules for an allosteric site on procaspase-6.
    Murray J; Giannetti AM; Steffek M; Gibbons P; Hearn BR; Cohen F; Tam C; Pozniak C; Bravo B; Lewcock J; Jaishankar P; Ly CQ; Zhao X; Tang Y; Chugha P; Arkin MR; Flygare J; Renslo AR
    ChemMedChem; 2014 Jan; 9(1):73-7, 2. PubMed ID: 24259468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent computational advances in the identification of allosteric sites in proteins.
    Lu S; Huang W; Zhang J
    Drug Discov Today; 2014 Oct; 19(10):1595-600. PubMed ID: 25107670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based design of cathepsin K inhibitors containing a benzyloxy-substituted benzoyl peptidomimetic.
    Thompson SK; Smith WW; Zhao B; Halbert SM; Tomaszek TA; Tew DG; Levy MA; Janson CA; DAlessio KJ; McQueney MS; Kurdyla J; Jones CS; DesJarlais RL; Abdel-Meguid SS; Veber DF
    J Med Chem; 1998 Oct; 41(21):3923-7. PubMed ID: 9767629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The consequences of lysosomotropism on the design of selective cathepsin K inhibitors.
    Black WC; Percival MD
    Chembiochem; 2006 Oct; 7(10):1525-35. PubMed ID: 16921579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine.
    Sivaraman J; Nägler DK; Zhang R; Ménard R; Cygler M
    J Mol Biol; 2000 Jan; 295(4):939-51. PubMed ID: 10656802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.