These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24518955)

  • 1. Growth and anthocyanin synthesis in excised Sorghum internodes : I. Effects of growth regulating substances.
    Vince D
    Planta; 1968 Sep; 82(3):261-79. PubMed ID: 24518955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experiments and hypothesis concerning the primary action of auxin in elongation growth].
    Hager A; Menzel H; Krauss A
    Planta; 1971 Mar; 100(1):47-75. PubMed ID: 24488103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Auxin transport and phototropism : I. The light induced formation of an inhibitor of auxin transport in coleoptiles].
    Hager A; Schmidt R
    Planta; 1968 Dec; 83(4):347-71. PubMed ID: 24519275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auxin Enhancement of mRNAs in Epidermis and Internal Tissues of the Pea Stem and Its Significance for Control of Elongation.
    Dietz A; Kutschera U; Ray PM
    Plant Physiol; 1990 Jun; 93(2):432-8. PubMed ID: 16667484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Dissection of the Relative Roles of Auxin and Gibberellin in the Regulation of Stem Elongation in Intact Light-Grown Peas.
    Yang T; Davies PJ; Reid JB
    Plant Physiol; 1996 Mar; 110(3):1029-1034. PubMed ID: 12226239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between the development of adventitious roots and the biosynthesis of anthocyanins in first internodes of sorghum.
    Stafford HA
    Plant Physiol; 1968 Mar; 43(3):318-26. PubMed ID: 16656766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin.
    Haga K; Iino M
    Plant Physiol; 1998 Aug; 117(4):1473-86. PubMed ID: 9701602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin concentration/growth relationship for Avena coleoptile sections from seedlings grown in complete darkness.
    Shinkle JR; Briggs WR
    Plant Physiol; 1984 Feb; 74(2):335-9. PubMed ID: 16663419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum.
    Kebrom TH; McKinley B; Mullet JE
    Biotechnol Biofuels; 2017; 10():159. PubMed ID: 28649278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experiments in the analysis of the geotropic perception : V. The influence of the gravitational field on the auxin-sensitivity of Helianthus-hypokotyls].
    Brauner L
    Planta; 1966 Dec; 69(4):299-318. PubMed ID: 24557882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockage by gibberellic Acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes.
    Russell DW; Galston AW
    Plant Physiol; 1969 Sep; 44(9):1211-6. PubMed ID: 16657193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude and Kinetics of Stem Elongation Induced by Exogenous Indole-3-Acetic Acid in Intact Light-Grown Pea Seedlings.
    Yang T; Law DM; Davies PJ
    Plant Physiol; 1993 Jul; 102(3):717-724. PubMed ID: 12231860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes.
    Kutschera U; Briggs WR
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2747-51. PubMed ID: 16593829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence against induction of protein synthesis during auxin-induced initial elongation of Avena coleoptiles.
    Nissl D; Zenk MH
    Planta; 1969 Dec; 89(4):323-41. PubMed ID: 24504511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gibberellic acid and the light inhibition of stem elongation.
    Vince D
    Planta; 1967 Dec; 75(4):291-308. PubMed ID: 24549337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of elongation growth by two sesquiterpene lactones isolated from Helianthus annuus L. : Possible molecular mechanism.
    Spring O; Hager A
    Planta; 1982 Dec; 156(5):433-40. PubMed ID: 24272656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Internode Length in Pisum sativum (Further Evidence for the Involvement of Indole-3-Acetic Acid).
    McKay MJ; Ross JJ; Lawrence NL; Cramp RE; Beveridge CA; Reid JB
    Plant Physiol; 1994 Dec; 106(4):1521-1526. PubMed ID: 12232426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth.
    Kurepin LV; Emery RJ; Pharis RP; Reid DM
    J Exp Bot; 2007; 58(8):2145-57. PubMed ID: 17490995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of salt on auxin-induced acidification and growth by pea internode sections.
    Terry ME; Jones RL
    Plant Physiol; 1981 Jul; 68(1):59-64. PubMed ID: 16661890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl.
    Jones AM; Cochran DS; Lamerson PM; Evans ML; Cohen JD
    Plant Physiol; 1991; 97(1):352-8. PubMed ID: 11538374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.