These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24518955)

  • 21. Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark- and light-grown Pisum seedlings.
    Behringer FJ; Davies PJ
    Planta; 1992 Aug; 188(1):85-92. PubMed ID: 24178203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of auxin and gibberellin in differentiation of primary Phloem fibers.
    Aloni R
    Plant Physiol; 1979 Apr; 63(4):609-14. PubMed ID: 16660777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Timing of the response of coleoptiles to the application and withdrawal of various auxins.
    Evans ML; Hokanson R
    Planta; 1969 Mar; 85(1):85-95. PubMed ID: 24515558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effect of auxin on in vivo extensibility of cortical cylinder and epidermis in pea internodes.
    Kutschera U; Briggs WR
    Plant Physiol; 1987 Aug; 84(4):1361-6. PubMed ID: 16665611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis.
    Li G; Zhu C; Gan L; Ng D; Xia K
    Plant Cell Rep; 2015 Mar; 34(3):483-94. PubMed ID: 25540118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [On the influence of kinetin and indole acetic acid on the sprouting of the buds of Pisum sativum].
    Denizci R
    Planta; 1966 Jun; 68(2):141-56. PubMed ID: 24557738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of indole-3-acetic acid in the circadian growth of the first internode of Arabidopsis.
    Jouve L; Gaspar T; Kevers C; Greppin H; Degli Agosti R
    Planta; 1999 Jul; 209(1):136-42. PubMed ID: 10467040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence against the acid-growth theory of auxin action.
    Kutschera U; Schopfer P
    Planta; 1985 Apr; 163(4):483-93. PubMed ID: 24249447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.).
    Wang G; Römheld V; Li C; Bangerth F
    J Plant Physiol; 2006 Apr; 163(6):591-600. PubMed ID: 16330125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulatory Mechanisms in Anthocyanin Biosynthesis in First Internodes of Sorghum vulgare: Effect of Presumed Inhibitors of Protein Synthesis.
    Stafford HA
    Plant Physiol; 1966 Jun; 41(6):953-61. PubMed ID: 16656361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of relative hormone concentration on auxin-gibberellin interaction in correlative inhibition of axillary buds.
    Phillips ID
    Planta; 1971 Mar; 96(1):27-34. PubMed ID: 24493039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells.
    Siemieniuk A; Karcz W
    AoB Plants; 2015 Jun; 7():. PubMed ID: 26134122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins.
    Liu Z; Shi MZ; Xie DY
    Planta; 2014 Apr; 239(4):765-81. PubMed ID: 24370633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sequential response to growth substances in coleoptiles from γ-irradiated wheat.
    Rose RJ; Adamson D
    Planta; 1969 Sep; 88(3):274-81. PubMed ID: 24504898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of phenolic acids, metallic ions and chelating agents on auxin-induced growth.
    Tomaszewski M; Thimann KV
    Plant Physiol; 1966 Nov; 41(9):1443-54. PubMed ID: 16656422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insensitivity of the diageotropica tomato mutant to auxin.
    Kelly MO; Bradford KJ
    Plant Physiol; 1986 Nov; 82(3):713-7. PubMed ID: 16665098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation.
    Kutschera U; Wang ZY
    Protoplasma; 2016 Jan; 253(1):3-14. PubMed ID: 25772679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of low frequency pulsed magnetic field on gravitropic response and cell elongation in coleoptiles of maize seedlings.
    Kościarz-Grzesiok A; Sieroń-Stołtny K; Polak M; Sieroń A; Karcz W
    Gen Physiol Biophys; 2016 Oct; 35(4):417-424. PubMed ID: 27447398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the role of RNA synthesis in auxin induction of cell enlargement.
    Nooden LD
    Plant Physiol; 1968 Feb; 43(2):140-50. PubMed ID: 16656747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.