These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 24519239)

  • 1. Assessing the effect of phosphate and silicate on Cd bioavailability in soil using an Escherichia coli cadAp::luc-based whole-cell sensor.
    Hou QH; Ma AZ; Li Y; Zhuang XL; Bai ZH; Zhang XK; Zhuang GQ
    Environ Sci Process Impacts; 2014 Apr; 16(4):890-6. PubMed ID: 24519239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils.
    Bolan N; Mahimairaja S; Kunhikrishnan A; Naidu R
    J Hazard Mater; 2013 Oct; 261():725-32. PubMed ID: 23177243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: integrating chemical approach with Escherichia coli arsRp::luc-based biosensor.
    Hou QH; Ma AZ; Lv D; Bai ZH; Zhuang XL; Zhuang GQ
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):6137-46. PubMed ID: 24687747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set.
    Hou Q; Ma A; Wang T; Lin J; Wang H; Du B; Zhuang X; Zhuang G
    Anal Bioanal Chem; 2015 Sep; 407(22):6865-71. PubMed ID: 26138890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of phosphate materials for immobilizing cadmium in soil.
    Hong CO; Chung DY; Lee DK; Kim PJ
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):268-74. PubMed ID: 19633979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of Calcium Silicate-biological Humus Fertilizer Composite on Uptake of Cd by Shallots from Contaminated Agricultural Soil].
    Liu DL; Yin GC; Chen ZL; Lin QT; Liu QJ; Zhong SX; Huang L; Zhang JQ
    Huan Jing Ke Xue; 2018 Jun; 39(6):2927-2935. PubMed ID: 29965652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils.
    Yoon Y; Kim S; Chae Y; Kang Y; Lee Y; Jeong SW; An YJ
    PLoS One; 2016; 11(5):e0154506. PubMed ID: 27171374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
    Lambert R; Grant C; Sauvé S
    Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn.
    Mignardi S; Corami A; Ferrini V
    Chemosphere; 2012 Jan; 86(4):354-60. PubMed ID: 22024096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium.
    Lee HH; Owens VN; Park S; Kim J; Hong CO
    Chemosphere; 2018 Sep; 206():369-375. PubMed ID: 29754061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil.
    Jeong S; Moon HS; Nam K; Kim JY; Kim TS
    Chemosphere; 2012 Jun; 88(2):204-10. PubMed ID: 22472099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters.
    Ivask A; François M; Kahru A; Dubourguier HC; Virta M; Douay F
    Chemosphere; 2004 Apr; 55(2):147-56. PubMed ID: 14761687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium bioaccumulation in Proisotoma minuta in relation to bioavailability in soils.
    Nursita AI; Singh B; Lees E
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1767-73. PubMed ID: 19493569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.
    de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG
    Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data.
    Pauget B; Gimbert F; Scheifler R; Coeurdassier M; de Vaufleury A
    Sci Total Environ; 2012 Aug; 431():413-25. PubMed ID: 22728924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of aqueous cadmium by addition of phosphates.
    Matusik J; Bajda T; Manecki M
    J Hazard Mater; 2008 Apr; 152(3):1332-9. PubMed ID: 17868991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L.
    Ji P; Sun T; Song Y; Ackland ML; Liu Y
    Environ Pollut; 2011 Mar; 159(3):762-8. PubMed ID: 21185631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential sorption of lead and cadmium in three tropical soils.
    Appel C; Ma LQ; Rhue RD; Reve W
    Environ Pollut; 2008 Sep; 155(1):132-40. PubMed ID: 18069107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.