These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 24519334)
1. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose. Slininger PJ; Dien BS; Lomont JM; Bothast RJ; Ladisch MR; Okos MR Biotechnol Bioeng; 2014 Aug; 111(8):1532-40. PubMed ID: 24519334 [TBL] [Abstract][Full Text] [Related]
2. Kinetic modeling of ethanol production by Scheffersomyces stipitis from xylose. Farias D; R de Andrade R; Maugeri-Filho F Appl Biochem Biotechnol; 2014 Jan; 172(1):361-79. PubMed ID: 24078256 [TBL] [Abstract][Full Text] [Related]
3. The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Agbogbo FK; Coward-Kelly G; Torry-Smith M; Wenger K; Jeffries TW Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):653-62. PubMed ID: 18478423 [TBL] [Abstract][Full Text] [Related]
4. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P; Nguyen NH Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940 [TBL] [Abstract][Full Text] [Related]
5. Probing the bioethanol production potential of Scheffersomyces (Pichia) stipitis using validated genome-scale model. Parambil LK; Sarkar D Biotechnol Lett; 2014 Dec; 36(12):2443-51. PubMed ID: 25129048 [TBL] [Abstract][Full Text] [Related]
6. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Kordowska-Wiater M; Targoński Z Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997 [TBL] [Abstract][Full Text] [Related]
7. Ethanol production from xylose with the yeast Pichia stipitis and simultaneous product recovery by gas stripping using a gas-lift loop fermentor with attached side-arm (GLSA). Domínguez JM; Cao N; Gong CS; Tsao GT Biotechnol Bioeng; 2000 Feb; 67(3):336-43. PubMed ID: 10620264 [TBL] [Abstract][Full Text] [Related]
8. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229 [TBL] [Abstract][Full Text] [Related]
9. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Su YK; Willis LB; Jeffries TW Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099 [TBL] [Abstract][Full Text] [Related]
10. Cell-recycle batch process of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for second generation bioethanol production. Ashoor S; Comitini F; Ciani M Biotechnol Lett; 2015 Nov; 37(11):2213-8. PubMed ID: 26198848 [TBL] [Abstract][Full Text] [Related]
11. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Rodrigues RC; Lu C; Lin B; Jeffries TW Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752 [TBL] [Abstract][Full Text] [Related]
12. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. Grabek-Lejko D; Ryabova OB; Oklejewicz B; Voronovsky AY; Sibirny AA J Ind Microbiol Biotechnol; 2006 Nov; 33(11):934-40. PubMed ID: 16775686 [TBL] [Abstract][Full Text] [Related]
13. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). Ruchala J; Kurylenko OO; Dmytruk KV; Sibirny AA J Ind Microbiol Biotechnol; 2020 Jan; 47(1):109-132. PubMed ID: 31637550 [TBL] [Abstract][Full Text] [Related]
14. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Agbogbo FK; Coward-Kelly G Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677 [TBL] [Abstract][Full Text] [Related]
15. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen source and mineral optimization enhance D: -xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Slininger PJ; Dien BS; Gorsich SW; Liu ZL Appl Microbiol Biotechnol; 2006 Oct; 72(6):1285-96. PubMed ID: 16676180 [TBL] [Abstract][Full Text] [Related]
17. Effect of pretreatment chemicals on xylose fermentation by Pichia stipitis. Agbogbo FK; Wenger KS Biotechnol Lett; 2006 Dec; 28(24):2065-9. PubMed ID: 17028775 [TBL] [Abstract][Full Text] [Related]
18. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Shi NQ; Davis B; Sherman F; Cruz J; Jeffries TW Yeast; 1999 Aug; 15(11):1021-30. PubMed ID: 10455226 [TBL] [Abstract][Full Text] [Related]
19. Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124. Slininger PJ; Gorsich SW; Liu ZL Biotechnol Bioeng; 2009 Feb; 102(3):778-90. PubMed ID: 18823052 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of fermentation kinetics of acid-treated corn cob hydrolysate for xylose fermentation in the presence of acetic acid by Pichia stipitis. Kashid M; Ghosalkar A 3 Biotech; 2017 Aug; 7(4):240. PubMed ID: 28702938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]