BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24519417)

  • 1. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.
    Zhou H; Alici G; Than TD; Li W
    Proc Inst Mech Eng H; 2014 Mar; 228(3):280-6. PubMed ID: 24519417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
    Zhang C; Liu H; Tan R; Li H
    Proc Inst Mech Eng H; 2014 Mar; 228(3):287-96. PubMed ID: 24525198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract.
    Zhou H; Alici G; Than TD; Li W
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1751-9. PubMed ID: 23193447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental research on anchoring force in intestine for the motion of capsule robot.
    Chen W; Ke Q; He S; Luo W; Ji XC; Yan G
    J Med Eng Technol; 2013 Jul; 37(5):334-41. PubMed ID: 23795696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal biomechanics simulator for robotic capsule endoscope validation.
    Slawinski PR; Oleynikov D; Terry BS
    J Med Eng Technol; 2015 Jan; 39(1):54-9. PubMed ID: 25367667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine.
    Kim JS; Sung IH; Kim YT; Kim DE; Jang YH
    Proc Inst Mech Eng H; 2007 Nov; 221(8):837-45. PubMed ID: 18161244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study of resistant properties of the small intestine for an active capsule endoscope.
    Wang X; Meng MQ
    Proc Inst Mech Eng H; 2010; 224(1):107-18. PubMed ID: 20225462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.
    Glass P; Cheung E; Sitti M
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2759-67. PubMed ID: 19126455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the critical stroke of an earthworm-like robot for capsule endoscopes.
    Kwon J; Park S; Park J; Kim B
    Proc Inst Mech Eng H; 2007 May; 221(4):397-405. PubMed ID: 17605397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotribological investigation of a multi-tube foot for traction generation in a medical microrobot.
    Kim YT; Kim DE
    Proc Inst Mech Eng H; 2009 Aug; 223(6):677-86. PubMed ID: 19743634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Preliminary Experimental Investigation of a Capsule for Measuring the Small Intestine Contraction Pressure.
    Li P; Kothari V; Terry BS
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2702-8. PubMed ID: 26080374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A magnetically actuated anchoring system for a wireless endoscopic capsule.
    Zhou H; Alici G; Munoz F
    Biomed Microdevices; 2016 Dec; 18(6):102. PubMed ID: 27787764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues.
    Poon CCY; Leung B; Chan CKW; Lau JYW; Chiu PWY
    Surg Endosc; 2016 Feb; 30(2):772-778. PubMed ID: 26017907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frictional resistance characteristics of a capsule inside the intestine for microendoscope design.
    Baek NK; Sung IH; Kim DE
    Proc Inst Mech Eng H; 2004; 218(3):193-201. PubMed ID: 15239570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small intestine mucosal adhesivity to in vivo capsule robot materials.
    Terry BS; Passernig AC; Hill ML; Schoen JA; Rentschler ME
    J Mech Behav Biomed Mater; 2012 Nov; 15():24-32. PubMed ID: 23026729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig.
    Lee SH; Lee J; Yoon YJ; Park S; Cheon C; Kim K; Nam S
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1734-41. PubMed ID: 21317074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless technologies for robotic endoscope in gastrointestinal tract.
    Gao P; Yan G; Wang Z; Liu H
    J Med Eng Technol; 2012 Jul; 36(5):242-50. PubMed ID: 22594607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.
    Kwon J; Cheung E; Park S; Sitti M
    Biomed Mater; 2006 Dec; 1(4):216-20. PubMed ID: 18458409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal Manometry Force Sensor for Robotic Capsule Endoscopy: An Acute, Multipatient In vivo Animal and Human Study.
    Francisco MM; Terry BS; Schoen JA; Rentschler ME
    IEEE Trans Biomed Eng; 2016 May; 63(5):943-951. PubMed ID: 26394411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and biotribological correlation of induced wear on bovine femoral condyles.
    Shields KJ; Owen JR; Wayne JS
    J Biomech Eng; 2009 Jun; 131(6):061005. PubMed ID: 19449959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.