BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24519528)

  • 1. Experimental and numerical study on the mechanical behavior of rat brain tissue.
    Karimi A; Navidbakhsh M; Yousefi H; Haghi AM; Sadati S
    Perfusion; 2014 Jul; 29(4):. PubMed ID: 24519528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.
    Karimi A; Navidbakhsh M
    J Mater Sci Mater Med; 2014 Jul; 25(7):1623-30. PubMed ID: 24677241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the hyperelastic properties of ex vivo brain tissue slices.
    Kaster T; Sack I; Samani A
    J Biomech; 2011 Apr; 44(6):1158-63. PubMed ID: 21329927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations.
    Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM
    Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.
    Karimi A; Navidbakhsh M; Beigzadeh B
    Tissue Cell; 2014 Feb; 46(1):97-102. PubMed ID: 24405852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the uniaxial mechanical properties of rat brains infected by Plasmodium berghei ANKA.
    Karimi A; Navidbakhsh M; Motevalli Haghi A; Faghihi S
    Proc Inst Mech Eng H; 2013 May; 227(5):609-14. PubMed ID: 23637271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Characterization and Modeling of the Porcine Cerebral Meninges.
    Pierrat B; Carroll L; Merle F; MacManus DB; Gaul R; Lally C; Gilchrist MD; Ní Annaidh A
    Front Bioeng Biotechnol; 2020; 8():801. PubMed ID: 32984262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model.
    Faghihi S; Karimi A; Jamadi M; Imani R; Salarian R
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():299-305. PubMed ID: 24656382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.
    Karimi A; Navidbakhsh M; Haghighatnama M; Haghi AM
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1768-74. PubMed ID: 25266627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional hyperelastic characterization of brain white matter tissue.
    Yousefsani SA; Karimi MZV
    Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.
    Moran R; Smith JH; García JJ
    J Biomech; 2014 Nov; 47(15):3762-6. PubMed ID: 25446271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling.
    Sasson A; Patchornik S; Eliasy R; Robinson D; Haj-Ali R
    J Mech Behav Biomed Mater; 2012 Apr; 8():143-53. PubMed ID: 22402161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material characterization of liver parenchyma using specimen-specific finite element models.
    Untaroiu CD; Lu YC
    J Mech Behav Biomed Mater; 2013 Oct; 26():11-22. PubMed ID: 23800843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.