These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 24519592)
41. Chloroplast ribosomes in the proplastids of Euglena gracilis. Hirvonen AP; Price CA Biochim Biophys Acta; 1971 Apr; 232(4):696-704. PubMed ID: 5556850 [No Abstract] [Full Text] [Related]
42. Cytosolic and plastid forms of 5-enolpyruvylshikimate-3-phosphate synthase in Euglena gracilis are differentially expressed during light-induced chloroplast development. Reinbothe C; Ortel B; Parthier B; Reinbothe S Mol Gen Genet; 1994 Dec; 245(5):616-22. PubMed ID: 7808412 [TBL] [Abstract][Full Text] [Related]
43. Transcription program of the chloroplast genome of Euglena gracilis during chloroplast development. Chelm BK; Hallick RB; Gray PW Proc Natl Acad Sci U S A; 1979 May; 76(5):2258-62. PubMed ID: 16592650 [TBL] [Abstract][Full Text] [Related]
44. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. Sláviková S; Vacula R; Fang Z; Ehara T; Osafune T; Schwartzbach SD J Cell Sci; 2005 Apr; 118(Pt 8):1651-61. PubMed ID: 15797929 [TBL] [Abstract][Full Text] [Related]
45. delta-Aminolevulinic Acid Synthase of Euglena gracilis: Regulation of Activity. Foley T; Dzelzkalns V; Beale SI Plant Physiol; 1982 Jul; 70(1):219-26. PubMed ID: 16662450 [TBL] [Abstract][Full Text] [Related]
46. Control of chloroplast formation in Euglena gracilis: dependence of rate of chlorophyll synthesis on previous nutritional history of cells. Kirk JT; Keylock MJ Biochem Biophys Res Commun; 1967 Sep; 28(6):927-31. PubMed ID: 6064595 [No Abstract] [Full Text] [Related]
47. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. Weinstein JD; Beale SI J Biol Chem; 1983 Jun; 258(11):6799-807. PubMed ID: 6133868 [TBL] [Abstract][Full Text] [Related]
48. Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Oldenburg DJ; Rowan BA; Zhao L; Walcher CL; Schleh M; Bendich AJ Planta; 2006 Dec; 225(1):41-55. PubMed ID: 16941116 [TBL] [Abstract][Full Text] [Related]
49. Interactions between the nucleus and cytoplasmic organelles during the cell cycle of Euglena gracilis in synchronized cultures. IV. An aggregate form of chloroplasts in association with the nucleus appearing prior to chloroplast division. Ehara T; Osafune T; Hase E Exp Cell Res; 1990 Sep; 190(1):104-12. PubMed ID: 2117542 [TBL] [Abstract][Full Text] [Related]
50. Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1. Grübler B; Merendino L; Twardziok SO; Mininno M; Allorent G; Chevalier F; Liebers M; Blanvillain R; Mayer KFX; Lerbs-Mache S; Ravanel S; Pfannschmidt T Plant Physiol; 2017 Nov; 175(3):1203-1219. PubMed ID: 28935841 [TBL] [Abstract][Full Text] [Related]
51. Functional and structural organization of chlorophyll in the developing photosynthetic membranes of Euglena gracilis Z. II. Formation of system II photosynthetic units during greening under optimal light intensity. Dubertret G; Lefort-Tran M Biochim Biophys Acta; 1978 Aug; 503(2):316-32. PubMed ID: 99170 [TBL] [Abstract][Full Text] [Related]
52. PIF3 is a repressor of chloroplast development. Stephenson PG; Fankhauser C; Terry MJ Proc Natl Acad Sci U S A; 2009 May; 106(18):7654-9. PubMed ID: 19380736 [TBL] [Abstract][Full Text] [Related]
53. Photoreactivation and dark repair of ultraviolet light-induced pyrimidine dimers in chloroplast DNA. Small GD; Greimann CS Nucleic Acids Res; 1977 Aug; 4(8):2893-902. PubMed ID: 909795 [TBL] [Abstract][Full Text] [Related]
54. delta-Aminolevulinic Acid Biosynthesis from Glutamatein Euglena gracilis: Photocontrol of Enzyme Levels in a Chlorophyll-Free Mutant. Mayer SM; Beale SI Plant Physiol; 1991 Nov; 97(3):1094-102. PubMed ID: 16668494 [TBL] [Abstract][Full Text] [Related]
55. Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts. Gomez-Silva B; Timko MP; Schiff JA Planta; 1985 Jul; 165(1):12-22. PubMed ID: 24240952 [TBL] [Abstract][Full Text] [Related]
56. Effects of streptomycin on plastids in dividing Euglena. Ben-Shaul Y; Ophir I Planta; 1970 Sep; 91(3):195-203. PubMed ID: 24500047 [TBL] [Abstract][Full Text] [Related]
57. The light-dependent control of chloroplast development in barley (Hordeum vulgare L). Apel K; Gollmer I; Batschauer A J Cell Biochem; 1983; 23(1-4):181-9. PubMed ID: 6202706 [TBL] [Abstract][Full Text] [Related]
58. REPLICATION OF DNA AND CELL DIVISION IN SYNCHRONOUSLY DIVIDING CULTURES OF EUGLENA GRACILIS. EDMUNDS LN Science; 1964 Jul; 145(3629):266-8. PubMed ID: 14171566 [TBL] [Abstract][Full Text] [Related]
59. Synthesis and Turnover of Proteins in Proplastids and Chloroplasts of Euglena gracilis. Cushman JC; Price CA Plant Physiol; 1986 Dec; 82(4):972-7. PubMed ID: 16665176 [TBL] [Abstract][Full Text] [Related]
60. Evolution of the control of pigment and plastid development in photosynthetic organisms. Schiff JA Biosystems; 1981; 14(1):123-47. PubMed ID: 7272468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]