BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24519638)

  • 41. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.
    Sun Y; Zhou Q; Diao C
    Bioresour Technol; 2008 Mar; 99(5):1103-10. PubMed ID: 17719774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass.
    Zhang X; Gao B; Xia H
    Ecotoxicol Environ Saf; 2014 Aug; 106():102-8. PubMed ID: 24836884
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators.
    Guo D; Ali A; Ren C; Du J; Li R; Lahori AH; Xiao R; Zhang Z; Zhang Z
    Ecotoxicol Environ Saf; 2019 Jan; 167():396-403. PubMed ID: 30366273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of rhizosphere interaction of hyperaccumulator Noccaea caerulescens to remediate cadmium-contaminated agricultural soil.
    Yang Y; Jiang RF; Wang W; Li HF
    Int J Phytoremediation; 2011 Oct; 13(9):933-45. PubMed ID: 21972514
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Wheat-Solanum nigrum L. intercropping on Cd accumulation by plants and soil bacterial community under Cd contaminated soil.
    Wang L; Zou R; Li YC; Tong Z; You M; Huo W; Chi K; Fan H
    Ecotoxicol Environ Saf; 2020 Dec; 206():111383. PubMed ID: 33002822
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil.
    Liu L; Li Y; Tang J; Hu L; Chen X
    J Environ Sci (China); 2011; 23(3):453-60. PubMed ID: 21520815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices.
    Dai H; Wei S; Pogrzeba M; Krzyżak J; Rusinowski S; Zhang Q
    Ecotoxicol Environ Saf; 2021 Feb; 209():111847. PubMed ID: 33388723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation.
    Clabeaux BL; Navarro DA; Aga DS; Bisson MA
    Environ Sci Technol; 2011 Jun; 45(12):5332-8. PubMed ID: 21568316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accumulation of cadmium in potential hyperaccumulators Chlorophytum comosum and Callisia fragrans and role of organic acids under stress conditions.
    Simek J; Kovalikova Z; Dohnal V; Tuma J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28129-28139. PubMed ID: 30069781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.
    Li S; Wang F; Ru M; Ni W
    Int J Phytoremediation; 2014; 16(7-12):1257-67. PubMed ID: 24933916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae).
    Sidhu GPS; Singh HP; Batish DR; Kohli RK
    Ecotoxicol Environ Saf; 2017 Jan; 135():209-215. PubMed ID: 27744137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Study on Cadmium Phytoremediation Potential of Indian Mustard, Brassica juncea.
    Goswami S; Das S
    Int J Phytoremediation; 2015; 17(1-6):583-8. PubMed ID: 25747246
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana.
    Wei JL; Lai HY; Chen ZS
    Ecotoxicol Environ Saf; 2012 Oct; 84():173-8. PubMed ID: 22832002
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variations in the accumulation and translocation of cadmium among pak choi cultivars as related to root morphology.
    Xia S; Deng R; Zhang Z; Liu C; Shi G
    Environ Sci Pollut Res Int; 2016 May; 23(10):9832-42. PubMed ID: 26856862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Indole-3-acetic acid promotes cadmium (Cd) accumulation in a Cd hyperaccumulator and a non-hyperaccumulator by different physiological responses.
    Ran J; Zheng W; Wang H; Wang H; Li Q
    Ecotoxicol Environ Saf; 2020 Mar; 191():110213. PubMed ID: 31978764
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kalimeris integrifolia Turcz. ex DC.: an accumulator of Cd.
    Wei S; Zhou Q; Srivastava M; Xiao H; Yang C; Zhang Q
    J Hazard Mater; 2009 Mar; 162(2-3):1571-3. PubMed ID: 18586386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants.
    Li X; Zhang X; Li B; Wu Y; Sun H; Yang Y
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21660-21670. PubMed ID: 28752309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting.
    Wei SH; Zhou QX
    Environ Sci Pollut Res Int; 2006 May; 13(3):151-5. PubMed ID: 16758704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea.
    Lu RR; Hu ZH; Zhang QL; Li YQ; Lin M; Wang XL; Wu XN; Yang JT; Zhang LQ; Jing YX; Peng CL
    Ecotoxicol Environ Saf; 2020 Oct; 203():110988. PubMed ID: 32678761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.