BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24519725)

  • 1. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.
    Atarod M; Rosvold JM; Frank CB; Shrive NG
    Ann Biomed Eng; 2014 May; 42(5):1121-32. PubMed ID: 24519725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproduction of in vivo motion using a parallel robot.
    Howard RA; Rosvold JM; Darcy SP; Corr DT; Shrive NG; Tapper JE; Ronsky JL; Beveridge JE; Marchuk LL; Frank CB
    J Biomech Eng; 2007 Oct; 129(5):743-9. PubMed ID: 17887900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical issues in using robots to reproduce joint specific gait.
    Rosvold JM; Darcy SP; Peterson RC; Achari Y; Corr DT; Marchuk LL; Frank CB; Shrive NG; Rosvold JM; Darcy SP; Peterson RC; Achari Y; Corr DT; Marchuk LL; Frank CB; Shrive NG
    J Biomech Eng; 2011 May; 133(5):054501. PubMed ID: 21599101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligament and meniscus loading in the ovine stifle joint during normal gait.
    Rosvold JM; Atarod M; Heard BJ; O'Brien EJ; Frank CB; Shrive NG
    Knee; 2016 Jan; 23(1):70-7. PubMed ID: 26765863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An instrumented spatial linkage for measuring knee joint kinematics.
    Rosvold JM; Atarod M; Frank CB; Shrive NG
    Knee; 2016 Jan; 23(1):43-8. PubMed ID: 26471425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of passive flexion-extension to normal gait in the ovine stifle joint.
    Darcy SP; Rosvold JM; Beveridge JE; Corr DT; Brown JJ; Sutherland CA; Marchuk LL; Frank CB; Shrive NG
    J Biomech; 2008; 41(4):854-60. PubMed ID: 18093599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact mechanics of the ovine stifle during simulated early stance in gait. An in vitro study using robotics.
    Lee-Shee NK; Dickey JP; Hurtig MB
    Vet Comp Orthop Traumatol; 2007; 20(1):70-2. PubMed ID: 17364100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel methodology to reproduce previously recorded six-degree of freedom kinematics on the same diarthrodial joint.
    Moore SM; Thomas M; Woo SL; Gabriel MT; Kilger R; Debski RE
    J Biomech; 2006; 39(10):1914-23. PubMed ID: 16005464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of robotic technology in biomechanics to study joint laxity.
    Mangan B; Hurtig MB; Dickey JP
    J Med Eng Technol; 2010; 34(7-8):399-407. PubMed ID: 20701457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping Stresses on the Tibial Plateau Cartilage in an Ovine Model Using In-Vivo Gait Kinematics.
    Vakiel P; Shekarforoush M; Dennison CR; Scott M; Muench G; Hart DA; Shrive NG
    Ann Biomed Eng; 2021 May; 49(5):1288-1297. PubMed ID: 33094417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament.
    Livesay GA; Rudy TW; Woo SL; Runco TJ; Sakane M; Li G; Fu FH
    J Orthop Res; 1997 Mar; 15(2):278-84. PubMed ID: 9167632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of position and path repeatability on force at the knee during six-DOF joint motion.
    Darcy SP; Gil JE; Woo SL; Debski RE
    Med Eng Phys; 2009 Jun; 31(5):553-7. PubMed ID: 19129002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-insertional distance is a poor correlate for ligament load: analysis from in vivo gait kinetics data.
    Atarod M; Rosvold JM; Kazemi M; Li L; Frank CB; Shrive NG
    J Biomech; 2013 Sep; 46(13):2264-70. PubMed ID: 23871234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The medial-lateral force distribution in the ovine stifle joint during walking.
    Taylor WR; Poepplau BM; König C; Ehrig RM; Zachow S; Duda GN; Heller MO
    J Orthop Res; 2011 Apr; 29(4):567-71. PubMed ID: 20957731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.
    Walter JP; Pandy MG
    Med Eng Phys; 2017 Oct; 48():196-205. PubMed ID: 28712529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ACL graft material on joint forces during a simulated in vivo motion in the porcine knee: examining force during the initial cycles.
    Boguszewski DV; Wagner CT; Butler DL; Shearn JT
    J Orthop Res; 2014 Nov; 32(11):1458-63. PubMed ID: 25099484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of robotic system passive path repeatability during specimen removal and reinstallation for in vitro knee joint testing.
    Goldsmith MT; Smith SD; Jansson KS; LaPrade RF; Wijdicks CA
    Med Eng Phys; 2014 Oct; 36(10):1331-7. PubMed ID: 25131406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forces and moments in six-DOF at the human knee joint: mathematical description for control.
    Fujie H; Livesay GA; Fujita M; Woo SL
    J Biomech; 1996 Dec; 29(12):1577-85. PubMed ID: 8945656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.