These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24519725)

  • 21. Immediate effect of Walkbot robotic gait training on neuromechanical knee stiffness in spastic hemiplegia: a case report.
    Kim DH; Shin YI; Joa KL; Shin YK; Lee JJ; You SJ
    NeuroRehabilitation; 2013; 32(4):833-8. PubMed ID: 23867409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of robotics technology to study human joint kinematics: a new methodology.
    Fujie H; Mabuchi K; Woo SL; Livesay GA; Arai S; Tsukamoto Y
    J Biomech Eng; 1993 Aug; 115(3):211-7. PubMed ID: 8231133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic in vivo kinematics of the intact ovine stifle joint.
    Tapper JE; Fukushima S; Azuma H; Thornton GM; Ronsky JL; Shrive NG; Frank CB
    J Orthop Res; 2006 Apr; 24(4):782-92. PubMed ID: 16514638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New methodology for multi-dimensional spinal joint testing with a parallel robot.
    Walker MR; Dickey JP
    Med Biol Eng Comput; 2007 Mar; 45(3):297-304. PubMed ID: 17235615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel robotic system for joint biomechanical tests: application to the human knee joint.
    Fujie H; Sekito T; Orita A
    J Biomech Eng; 2004 Feb; 126(1):54-61. PubMed ID: 15171129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reliability of navigated knee stability examination: a cadaveric evaluation.
    Pearle AD; Solomon DJ; Wanich T; Moreau-Gaudry A; Granchi CC; Wickiewicz TL; Warren RF
    Am J Sports Med; 2007 Aug; 35(8):1315-20. PubMed ID: 17440197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of Robotic Compliance and Bone Bending on Simulated
    Nesbitt RJ; Bates NA; Karkhanis TD; Schaffner G; Shearn JT
    Am J Biomed Eng; 2016; 6(1):12-18. PubMed ID: 28835876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimised robot-based system for the exploration of elastic joint properties.
    Frey M; Burgkart R; Regenfelder F; Riener R
    Med Biol Eng Comput; 2004 Sep; 42(5):674-8. PubMed ID: 15503969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a six degree-of-freedom robotic system for hip in vitro biomechanical testing.
    Goldsmith MT; Rasmussen MT; Turnbull TL; Trindade CAC; LaPrade RF; Philippon MJ; Wijdicks CA
    J Biomech; 2015 Nov; 48(15):4093-4100. PubMed ID: 26537889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation.
    Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE
    J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation of in vivo dynamics during robot assisted joint movement.
    Bobrowitsch E; Lorenz A; Wülker N; Walter C
    Biomed Eng Online; 2014 Dec; 13():167. PubMed ID: 25516427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of Robotic Manipulators to Study Diarthrodial Joint Function.
    Debski RE; Yamakawa S; Musahl V; Fujie H
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 28056127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of medial meniscectomy and coronal plane angulation on in vitro load transmission in the canine stifle joint.
    Newman AP; Anderson DR; Daniels AU; Jee KW
    J Orthop Res; 1989; 7(2):281-91. PubMed ID: 2918427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. There is significant load sharing and physical interaction between the anteromedial and posterolateral bundles of the ovine ACL under anterior tibial loads.
    Atarod Pilambaraei M; O'Brien EJ; Frank CB; Shrive NG
    Knee; 2012 Dec; 19(6):797-803. PubMed ID: 22465820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo measurement of the dynamic 3-D kinematics of the ovine stifle joint.
    Tapper JE; Ronsky JL; Powers MJ; Sutherland C; Majima T; Frank CB; Shrive NG
    J Biomech Eng; 2004 Apr; 126(2):301-5. PubMed ID: 15179862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.