BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24519878)

  • 1. Prediction of cartilage compressive modulus using multiexponential analysis of T(2) relaxation data and support vector regression.
    Irrechukwu ON; Thaer SV; Frank EH; Lin PC; Reiter DA; Grodzinsky AJ; Spencer RG
    NMR Biomed; 2014 Apr; 27(4):468-77. PubMed ID: 24519878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of engineered cartilage constructs using multiexponential T₂ relaxation analysis and support vector regression.
    Irrechukwu ON; Reiter DA; Lin PC; Roque RA; Fishbein KW; Spencer RG
    Tissue Eng Part C Methods; 2012 Jun; 18(6):433-43. PubMed ID: 22166112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved specificity of cartilage matrix evaluation using multiexponential transverse relaxation analysis applied to pathomimetically degraded cartilage.
    Reiter DA; Roque RA; Lin PC; Doty SB; Pleshko N; Spencer RG
    NMR Biomed; 2011 Dec; 24(10):1286-94. PubMed ID: 21465593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of frozen storage and sample temperature on water compartmentation and multiexponential transverse relaxation in cartilage.
    Reiter DA; Peacock A; Spencer RG
    Magn Reson Imaging; 2011 May; 29(4):561-7. PubMed ID: 21277724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping proteoglycan-bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis.
    Reiter DA; Roque RA; Lin PC; Irrechukwu O; Doty S; Longo DL; Pleshko N; Spencer RG
    Magn Reson Med; 2011 Feb; 65(2):377-84. PubMed ID: 21264931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular NMR T2 values can predict cartilage stress-relaxation parameters.
    June RK; Fyhrie DP
    Biochem Biophys Res Commun; 2008 Dec; 377(1):57-61. PubMed ID: 18822272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction.
    Lakin BA; Grasso DJ; Shah SS; Stewart RC; Bansal PN; Freedman JD; Grinstaff MW; Snyder BD
    Osteoarthritis Cartilage; 2013 Jan; 21(1):60-8. PubMed ID: 23041438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved MR-based characterization of engineered cartilage using multiexponential T2 relaxation and multivariate analysis.
    Reiter DA; Irrechukwu O; Lin PC; Moghadam S; Von Thaer S; Pleshko N; Spencer RG
    NMR Biomed; 2012 Mar; 25(3):476-88. PubMed ID: 22287335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical analysis of cartilage graft reinforced with PDS plate.
    Conderman C; Kinzinger M; Manuel C; Protsenko D; Wong BJ
    Laryngoscope; 2013 Feb; 123(2):339-43. PubMed ID: 22965809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behavior of bovine nasal cartilage under static and dynamic loading.
    Colombo V; Cadová M; Gallo LM
    J Biomech; 2013 Sep; 46(13):2137-44. PubMed ID: 23915577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs.
    Treppo S; Koepp H; Quan EC; Cole AA; Kuettner KE; Grodzinsky AJ
    J Orthop Res; 2000 Sep; 18(5):739-48. PubMed ID: 11117295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.
    Nguyen QT; Hwang Y; Chen AC; Varghese S; Sah RL
    Biomaterials; 2012 Oct; 33(28):6682-90. PubMed ID: 22749448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies.
    Fulcher GR; Hukins DW; Shepherd DE
    BMC Musculoskelet Disord; 2009 Jun; 10():61. PubMed ID: 19497105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis.
    Grenier S; Bhargava MM; Torzilli PA
    J Biomech; 2014 Feb; 47(3):645-52. PubMed ID: 24360770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrast enhanced computed tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage.
    Bansal PN; Joshi NS; Entezari V; Grinstaff MW; Snyder BD
    Osteoarthritis Cartilage; 2010 Feb; 18(2):184-91. PubMed ID: 19815108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive fatigue and endurance of juvenile bovine articular cartilage explants.
    Riemenschneider PE; Rose MD; Giordani M; McNary SM
    J Biomech; 2019 Oct; 95():109304. PubMed ID: 31447176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage stress-relaxation is affected by both the charge concentration and valence of solution cations.
    June RK; Mejia KL; Barone JR; Fyhrie DP
    Osteoarthritis Cartilage; 2009 May; 17(5):669-76. PubMed ID: 19010694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the measurement of multi-component T2 relaxation in cartilage by MR spectroscopy and imaging.
    Zheng S; Xia Y
    Magn Reson Imaging; 2010 May; 28(4):537-45. PubMed ID: 20061115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.