These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2451991)

  • 41. Effects of mitochondrion on calcium transients at intact presynaptic terminals depend on frequency of nerve firing.
    Peng YY
    J Neurophysiol; 1998 Jul; 80(1):186-95. PubMed ID: 9658040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of lipoprotein lipase activity in cultured rat mesenchymal heart cells and preadipocytes by dibutyryl cyclic AMP, cholera toxin and 3-isobutyl-1-methylxanthine.
    Friedman G; Chajek-Shaul T; Stein O; Stein Y
    Biochim Biophys Acta; 1983 Jun; 752(1):106-17. PubMed ID: 6189519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Beta-adrenergic agonists and cyclic AMP decrease intracellular resting free-calcium concentration in ileum smooth muscle.
    Parker I; Ito Y; Kuriyama H; Miledi R
    Proc R Soc Lond B Biol Sci; 1987 Mar; 230(1259):207-14. PubMed ID: 2884669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plateau pattern of afferent discharge rate from frog muscle spindles.
    Sokabe M; Nunogaki K; Naruse K; Soga H; Fujitsuka N; Yoshimura A; Ito F
    J Neurophysiol; 1993 Jul; 70(1):275-83. PubMed ID: 8395580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identified octopaminergic neurons modulate contractions of locust visceral muscle via adenosine 3',5'-monophosphate (cyclic AMP).
    Lange AB; Orchard I
    Brain Res; 1986 Jan; 363(2):340-9. PubMed ID: 2417668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. cAMP mediates the increase in apical membrane Na+ conductance produced in rat CCD by vasopressin.
    Schafer JA; Troutman SL
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F823-31. PubMed ID: 1700630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclic nucleotide phosphodiesterases from frog atrial fibers: isolation and drug sensitivities.
    Lugnier C; Gauthier C; Le Bec A; Soustre H
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H654-60. PubMed ID: 1373036
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibitory effect of cyclic AMP on phorbol ester-stimulated production of reactive oxygen metabolites in rat glomeruli.
    Miyanoshita A; Takahashi T; Endou H
    Biochem Biophys Res Commun; 1989 Nov; 165(1):519-25. PubMed ID: 2480127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carnitine transport by rat kidney cortex slices: stimulation by dibutyryl cyclic AMP+.
    Huth PJ; Thomsen JH; Shug AL
    Life Sci; 1978 Aug; 23(7):715-22. PubMed ID: 211363
    [No Abstract]   [Full Text] [Related]  

  • 50. Myocardial action potential prolongation by calcium channel activation under calcium free-EGTA condition in rats: developmental and regional variations.
    Tanaka H; Noguchi K; Shigenobu K
    Gen Pharmacol; 1995 Jan; 26(1):39-43. PubMed ID: 7536175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of acetylcholine-induced inhibition of Ca current in bullfrog atrial myocytes.
    Nakajima T; Wu S; Irisawa H; Giles W
    J Gen Physiol; 1990 Oct; 96(4):865-85. PubMed ID: 2175347
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct effects of calcium- and cyclic AMP-enhancing factors on cytoskeletal synthesis and assembly in mouse osteoblastic cells.
    Lomri A; Marie PJ
    Biochim Biophys Acta; 1990 Apr; 1052(1):179-86. PubMed ID: 1691023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclic AMP-regulating agents inhibit endotoxin-mediated cartilage degradation.
    Bednar MS; Hubbard JR; Steinberg JJ; Broner FA; Sledge CB
    Biochem J; 1987 May; 244(1):63-8. PubMed ID: 2444211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical activity, cAMP concentration, and insulin release in mouse islets of Langerhans.
    Eddlestone GT; Oldham SB; Lipson LG; Premdas FH; Beigelman PM
    Am J Physiol; 1985 Jan; 248(1 Pt 1):C145-53. PubMed ID: 2578253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of Ig-induced eosinophil degranulation by adenosine 3',5'-cyclic monophosphate.
    Kita H; Abu-Ghazaleh RI; Gleich GJ; Abraham RT
    J Immunol; 1991 Apr; 146(8):2712-8. PubMed ID: 1707917
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early effects of parathyroid hormone on membrane potential of rat osteoblasts in culture: role of cAMP and Ca2+.
    Fritsch J; Edelman A; Balsan S
    J Bone Miner Res; 1988 Oct; 3(5):547-54. PubMed ID: 2461641
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Serotonin N-acetyltransferase (NAT) induction in mammalian retina: role of cyclic AMP and calcium ions.
    Zurawska E; Nowak JZ
    Folia Histochem Cytobiol; 1992; 30(1):5-11. PubMed ID: 1280231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The intracellular pH of frog skeletal muscle: its regulation in isotonic solutions.
    Abercrombie RF; Putnam RW; Roos A
    J Physiol; 1983 Dec; 345():175-87. PubMed ID: 6420546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of cAMP- and cGMP-related drugs on porcine cultured ciliary muscle.
    Fujimoto N; Hanawa T; Kimura T
    J Ocul Pharmacol Ther; 1998 Jun; 14(3):247-52. PubMed ID: 9671432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3',5'-cyclic adenosine monophosphate as an intracellular second messenger of luteinizing hormone: application of the forskolin criteria.
    Adashi EY; Resnick CE
    J Cell Biochem; 1986; 31(3):217-28. PubMed ID: 2484681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.