These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24520317)

  • 1. One-against-all weighted dynamic time warping for language-independent and speaker-dependent speech recognition in adverse conditions.
    Zhang X; Sun J; Luo Z
    PLoS One; 2014; 9(2):e85458. PubMed ID: 24520317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of dynamic time warping optimization algorithm in speech recognition of machine translation.
    Jiang S; Chen Z
    Heliyon; 2023 Nov; 9(11):e21625. PubMed ID: 38027668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic time warping in phoneme modeling for fast pronunciation error detection.
    Miodonska Z; Bugdol MD; Krecichwost M
    Comput Biol Med; 2016 Feb; 69():277-85. PubMed ID: 26739104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EventDTW: An Improved Dynamic Time Warping Algorithm for Aligning Biomedical Signals of Nonuniform Sampling Frequencies.
    Jiang Y; Qi Y; Wang WK; Bent B; Avram R; Olgin J; Dunn J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolated word recognition of silent speech using magnetic implants and sensors.
    Gilbert JM; Rybchenko SI; Hofe R; Ell SR; Fagan MJ; Moore RK; Green P
    Med Eng Phys; 2010 Dec; 32(10):1189-97. PubMed ID: 20863739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proof-of-concept study for automatic speech recognition to transcribe AAC speakers' speech from high-technology AAC systems.
    Chen SK; Saeli C; Hu G
    Assist Technol; 2024 Jul; 36(4):319-326. PubMed ID: 37748185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis, and Genetic Selection of Distinctive Features.
    Kamiński KA; Dobrowolski AP
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimising Speaker-Dependent Feature Extraction Parameters to Improve Automatic Speech Recognition Performance for People with Dysarthria.
    Marini M; Vanello N; Fanucci L
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic speech recognition (ASR) and its use as a tool for assessment or therapy of voice, speech, and language disorders.
    Kitzing P; Maier A; Ahlander VL
    Logoped Phoniatr Vocol; 2009; 34(2):91-6. PubMed ID: 19173117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accurate and rapid continuous wavelet dynamic time warping algorithm for end-to-end mapping in ultra-long nanopore sequencing.
    Han R; Li Y; Gao X; Wang S
    Bioinformatics; 2018 Sep; 34(17):i722-i731. PubMed ID: 30423085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment.
    Nahar R; Miwa S; Kai A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of automatic and human speech recognition in null grammar.
    Juneja A
    J Acoust Soc Am; 2012 Mar; 131(3):EL256-61. PubMed ID: 22423817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sign language recognition by combining statistical DTW and independent classification.
    Lichtenauer JF; Hendriks EA; Reinders MJ
    IEEE Trans Pattern Anal Mach Intell; 2008 Nov; 30(11):2040-6. PubMed ID: 18787250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A user evaluation of speech/phrase recognition software in critically ill patients: a DECIDE-AI feasibility study.
    Musalia M; Laha S; Cazalilla-Chica J; Allan J; Roach L; Twamley J; Nanda S; Verlander M; Williams A; Kempe I; Patel II; Campbell-West F; Blackwood B; McAuley DF
    Crit Care; 2023 Jul; 27(1):277. PubMed ID: 37430313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic recognition of pathological phoneme production.
    Wielgat R; Zieliński TP; Woźniak T; Grabias S; Król D
    Folia Phoniatr Logop; 2008; 60(6):323-31. PubMed ID: 19011305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-DTW for Human Action Recognition Based on Nanogenerator.
    Xu H; Feng R; Zhang W
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.
    Cheng J; Chen X; Liu A; Peng H
    Sensors (Basel); 2015 Sep; 15(9):23303-24. PubMed ID: 26389907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating Noise Robustness in Speech Command Recognition by Noise Augmentation of Training Data.
    Pervaiz A; Hussain F; Israr H; Tahir MA; Raja FR; Baloch NK; Ishmanov F; Zikria YB
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.