These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2452047)

  • 21. Effect of insulin on intracellular pH in frog skeletal muscle fibers.
    Putnam RW
    Am J Physiol; 1985 Mar; 248(3 Pt 1):C330-6. PubMed ID: 2579572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active Na-K transport and the rate of ouabain binding. The effect of insulin and other stimuli on skeletal muscle and adipocytes.
    Clausen T; Hansen O
    J Physiol; 1977 Sep; 270(2):415-30. PubMed ID: 903900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active ion transport in the renal proximal tubule. II. Ionic dependence of the Na pump.
    Soltoff SP; Mandel LJ
    J Gen Physiol; 1984 Oct; 84(4):623-42. PubMed ID: 6094705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sodium pump stoicheiometry determined by simultaneous measurements of sodium efflux and membrane current in barnacle.
    Lederer WJ; Nelson MT
    J Physiol; 1984 Mar; 348():665-77. PubMed ID: 6325678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early signals in serum-induced increases in ouabain-sensitive Na(+)-K+ pump activity and in glucose transport in rat skeletal muscle are amiloride-sensitive.
    Brodie C; Sampson SR
    J Neurochem; 1993 Jun; 60(6):2247-53. PubMed ID: 8388036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of electrogenic pumps to resting membrane potentials: the theory of electrogenic potentials.
    Sjodin RA
    Soc Gen Physiol Ser; 1984; 38():105-27. PubMed ID: 6320455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The number of sodium ion pumping sites in skeletal muscle and its modification by insulin.
    Erlij D; Grinstein S
    J Physiol; 1976 Jul; 259(1):13-31. PubMed ID: 182957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump.
    Yingst DR; Hoffman JF
    J Gen Physiol; 1984 Jan; 83(1):19-45. PubMed ID: 6319543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro action of insulin on erythrocyte sodium transport mechanisms: its possible role in the pathogenesis of arterial hypertension.
    Tedde R; Sechi LA; Marigliano A; Scano L; Pala A
    Clin Exp Hypertens A; 1988; 10(4):545-59. PubMed ID: 2455613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energetics of active sodium-potassium transport following stimulation with insulin, adrenaline or salbutamol in rat soleus muscle.
    Chinet A; Clausen T
    Pflugers Arch; 1984 Jun; 401(2):160-6. PubMed ID: 6382150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of diphenylhydantoin on the transport of Na + and K + and the regulation of sugar transport in muscle in vitro.
    Bihler I; Sawh PC
    Biochim Biophys Acta; 1971 Oct; 249(1):240-51. PubMed ID: 5141128
    [No Abstract]   [Full Text] [Related]  

  • 33. Calcitonin gene-related peptide stimulates active Na(+)-K+ transport in rat soleus muscle.
    Andersen SL; Clausen T
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C419-29. PubMed ID: 8447372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the membrane stabilizer diphenylhydantoin on potassium and sodium movements in skeletal muscle.
    O'Donnell JM; Kovács T; Szábó B
    Pflugers Arch; 1975 Jul; 358(3):275-88. PubMed ID: 1081681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle.
    Clausen T; Flatman JA
    J Physiol; 1977 Sep; 270(2):383-414. PubMed ID: 198530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active transport of sodium and potassium in mammalian skeletal muscle and its modification by nerve and by cholinergic and adrenergic agents.
    Dockry M; Kernan RP; Tangney A
    J Physiol; 1966 Sep; 186(1):187-200. PubMed ID: 5914252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Na+-K+ pump in chronic renal failure.
    Kaji D; Thomas K
    Am J Physiol; 1987 May; 252(5 Pt 2):F785-93. PubMed ID: 2437805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose uptake in porcine carotid artery: relation to alterations in active Na+-K+ transport.
    Lynch RM; Paul RJ
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C433-40. PubMed ID: 6093572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement (by ATP, insulin, and lack of divalent cations) of ouabain inhibition of cation transport and ouabain binding in frog skeletal muscle; effect of insulin and ouabain on sarcolemmal (Na + K)MgATPase.
    Manery JF; Dryden EE; Still JS; Madapallimattam G
    Can J Physiol Pharmacol; 1977 Feb; 55(1):21-33. PubMed ID: 139199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.