BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24520692)

  • 21. Size-effect on the physical characteristics of the aerobic granule in a SBR.
    Toh SK; Tay JH; Moy BY; Ivanov V; Tay ST
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):687-95. PubMed ID: 12664147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of mass transfer in overall substrate removal rate in a sequential aerobic sludge blanket reactor treating a non-inhibitory substrate.
    Huang JS; Tsao CW; Lu YC; Chou HH
    Water Res; 2011 Oct; 45(15):4562-70. PubMed ID: 21719066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment.
    Tay JH; Tay ST; Ivanov V; Pan S; Jiang HL; Liu QS
    Lett Appl Microbiol; 2003; 36(5):297-301. PubMed ID: 12680942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of operational conditions on the stability of aerobic granules from the perspective of quorum sensing.
    Zhang C; Sun S; Liu X; Wan C; Lee DJ
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7640-7649. PubMed ID: 28124264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Livestock wastewater treatment using aerobic granular sludge.
    Othman I; Anuar AN; Ujang Z; Rosman NH; Harun H; Chelliapan S
    Bioresour Technol; 2013 Apr; 133():630-4. PubMed ID: 23453799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors.
    Wagner J; Weissbrodt DG; Manguin V; da Costa RH; Morgenroth E; Derlon N
    Water Res; 2015 Nov; 85():158-66. PubMed ID: 26318648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads.
    Jafari Kang A; Yuan Q
    Bioresour Technol; 2017 Jun; 234():336-342. PubMed ID: 28340438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of shear stress on morphology, structure and microbial activity of aerobic granules].
    Wang C; Zheng XY
    Huan Jing Ke Xue; 2008 Aug; 29(8):2235-41. PubMed ID: 18839578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy.
    Liu YQ; Zhang X; Zhang R; Liu WT; Tay JH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):469-77. PubMed ID: 26403920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of inoculum variation on formation and stability of aerobic granules in oily wastewater treatment.
    Ghosh S; Chakraborty S
    J Environ Manage; 2019 Oct; 248():109239. PubMed ID: 31306929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerobic granulation of protein-rich granules from nitrogen-lean wastewaters.
    Chen YY; Ju SP; Lee DJ
    Bioresour Technol; 2016 Oct; 218():469-75. PubMed ID: 27394992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules.
    Quan XC; Ma JY; Xiong WC; Yang ZF
    J Hazard Mater; 2011 Nov; 196():278-86. PubMed ID: 21962861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proposed aerobic granules size development scheme for aerobic granulation process.
    Dahalan FA; Abdullah N; Yuzir A; Olsson G; Salmiati ; Hamdzah M; Din MF; Ahmad SA; Khalil KA; Anuar AN; Noor ZZ; Ujang Z
    Bioresour Technol; 2015 Apr; 181():291-6. PubMed ID: 25661308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of sludge discharge positions on steady-state aerobic granules in sequencing batch reactor (SBR).
    Liu L; Gao DW; Liang H
    Water Sci Technol; 2012; 66(8):1722-7. PubMed ID: 22907457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Influence of organic loading rate on the start-up of a sequencing airlift aerobic granular reactor].
    Liu MY; Zhou DD; Gao LL; Ma DF; Zhang YM; Li KY
    Huan Jing Ke Xue; 2012 Oct; 33(10):3529-34. PubMed ID: 23233984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure analysis of aerobic granule from a sequencing batch reactor for organic matter and ammonia nitrogen removal.
    Li J; Cai A; Wang D; Chen C; Ni Y
    Int J Environ Res Public Health; 2014 Feb; 11(3):2427-36. PubMed ID: 24577284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivation characteristics of stored aerobic granular sludge using different operational strategies.
    Yuan X; Gao D; Liang H
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1365-74. PubMed ID: 22072196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Long-term Stability of Aerobic Granular Sludge Under Low Carbon to Nitrogen Ratio].
    Yuan QJ; Zhang HX; Chen FY
    Huan Jing Ke Xue; 2020 Oct; 41(10):4661-4668. PubMed ID: 33124399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater.
    Lemaire R; Webb RI; Yuan Z
    ISME J; 2008 May; 2(5):528-41. PubMed ID: 18256703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.