BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 24520922)

  • 1. WO₃ nanolamella gas sensor: porosity control using SnO₂ nanoparticles for enhanced NO₂ sensing.
    Kida T; Nishiyama A; Hua Z; Suematsu K; Yuasa M; Shimanoe K
    Langmuir; 2014 Mar; 30(9):2571-9. PubMed ID: 24520922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle cluster gas sensor: controlled clustering of SnO₂ nanoparticles for highly sensitive toluene detection.
    Suematsu K; Shin Y; Hua Z; Yoshida K; Yuasa M; Kida T; Shimanoe K
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5319-26. PubMed ID: 24635838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving methane gas sensing performance of flower-like SnO
    Xue D; Wang Y; Cao J; Sun G; Zhang Z
    Talanta; 2019 Jul; 199():603-611. PubMed ID: 30952304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature.
    Jiang Z; Chen W; Jin L; Cui F; Song Z; Zhu C
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.
    Ganbavle VV; Mohite SV; Agawane GL; Kim JH; Rajpure KY
    J Colloid Interface Sci; 2015 Aug; 451():245-54. PubMed ID: 25898119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the Thermal Annealing on Structural and Morphological Properties of High-Porosity A-WO
    Cruz-Leal M; Goiz O; Chávez F; Pérez-Sánchez GF; Hernández-Como N; Santes V; Felipe C
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31514340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sintering temperature on sensing properties of WO
    Lu R; Zhong X; Shang S; Wang S; Tang M
    R Soc Open Sci; 2018 Oct; 5(10):171691. PubMed ID: 30473796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.
    Horprathum M; Srichaiyaperk T; Samransuksamer B; Wisitsoraat A; Eiamchai P; Limwichean S; Chananonnawathorn C; Aiempanakit K; Nuntawong N; Patthanasettakul V; Oros C; Porntheeraphat S; Songsiriritthigul P; Nakajima H; Tuantranont A; Chindaudom P
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22051-60. PubMed ID: 25422873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced NH
    Van Toan N; Hung CM; Hoa ND; Van Duy N; Thi Thanh Le D; Thi Thu Hoa N; Viet NN; Phuoc PH; Van Hieu N
    J Hazard Mater; 2021 Jun; 412():125181. PubMed ID: 33951858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attachment of metal nanoparticles to SnO2 nanowires for enhancement of gas sensing properties.
    Woo HW; Kwon YJ; Cho HY; Na HG
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8242-7. PubMed ID: 25958508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas.
    Li L; Zhang C; Chen W
    Nanoscale; 2015 Jul; 7(28):12133-42. PubMed ID: 26123121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures.
    Tammanoon N; Wisitsoraat A; Sriprachuabwong C; Phokharatkul D; Tuantranont A; Phanichphant S; Liewhiran C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24338-52. PubMed ID: 26479951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties.
    Zhang H; Wang S; Wang Y; Yang J; Gao X; Wang L
    Phys Chem Chem Phys; 2014 Jun; 16(22):10830-6. PubMed ID: 24760175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds.
    Nayak AK; Ghosh R; Santra S; Guha PK; Pradhan D
    Nanoscale; 2015 Aug; 7(29):12460-73. PubMed ID: 26134476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation.
    Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J
    J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.
    Tran VD; Nguyen DH; Nguyen VD; Nguyen VH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4828-37. PubMed ID: 26816341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity.
    Liu X; Chen N; Han B; Xiao X; Chen G; Djerdj I; Wang Y
    Nanoscale; 2015 Sep; 7(36):14872-80. PubMed ID: 26289622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.