These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24521074)

  • 1. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries.
    Vargas Ó; Caballero Á; Morales J; Rodríguez-Castellón E
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3290-8. PubMed ID: 24521074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries.
    Zou Y; Wang Y
    Nanoscale; 2011 Jun; 3(6):2615-20. PubMed ID: 21523266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Reaction Mechanisms on Graphite Anodes for K-Ion Batteries.
    Naylor AJ; Carboni M; Valvo M; Younesi R
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45636-45645. PubMed ID: 31718143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.
    Fan X; Zheng WT; Kuo JL; Singh DJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.
    Niehoff P; Passerini S; Winter M
    Langmuir; 2013 May; 29(19):5806-16. PubMed ID: 23586847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizing Nanosized Si Anodes with the Synergetic Usage of Atomic Layer Deposition and Electrolyte Additives for Li-Ion Batteries.
    Hy S; Chen YH; Cheng HM; Pan CJ; Cheng JH; Rick J; Hwang BJ
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13801-7. PubMed ID: 25989244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interphase Engineering Enhanced Electro-chemical Stability of Prelithiated Anode.
    Xu S; Fang Q; Wu J; Weng S; Li X; Liu Q; Wang Q; Yu X; Chen L; Li Y; Wang Z; Wang X
    Small; 2024 Jan; 20(2):e2305639. PubMed ID: 37658504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities.
    Zou Y; Wang Y
    ACS Nano; 2011 Oct; 5(10):8108-14. PubMed ID: 21939228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MgO-decorated few-layered graphene as an anode for li-ion batteries.
    Petnikota S; Rotte NK; Reddy MV; Srikanth VV; Chowdari BV
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2301-9. PubMed ID: 25559260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting properties of 3D binder-free manganese oxide anodes by preformation of a solid electrolyte interphase.
    Zhou H; Wang X; Sheridan E; Chen D
    ChemSusChem; 2015 Apr; 8(8):1368-80. PubMed ID: 25760685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries.
    Vissers DR; Chen Z; Shao Y; Engelhard M; Das U; Redfern P; Curtiss LA; Pan B; Liu J; Amine K
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14244-51. PubMed ID: 27152912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries.
    Li J; Xu X; Yu X; Han X; Zhang T; Zuo Y; Zhang C; Yang D; Wang X; Luo Z; Arbiol J; Llorca J; Liu J; Cabot A
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4414-4422. PubMed ID: 31909589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries.
    Assegie AA; Chung CC; Tsai MC; Su WN; Chen CW; Hwang BJ
    Nanoscale; 2019 Feb; 11(6):2710-2720. PubMed ID: 30672549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li-ion transport at the interface between a graphite anode and Li
    Baba T; Sodeyama K; Kawamura Y; Tateyama Y
    Phys Chem Chem Phys; 2020 May; 22(19):10764-10774. PubMed ID: 32159181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.