These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24521406)

  • 1. Effects of natural acids on surface properties of asbestos minerals and kaolinite.
    Lavkulich LM; Schreier HE; Wilson JE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(6):617-24. PubMed ID: 24521406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of weathering on ecopersistence, reactivity, and potential toxicity of naturally occurring asbestos and asbestiform minerals.
    Enrico Favero-Longo S; Turci F; Tomatis M; Compagnoni R; Piervittori R; Fubini B
    J Toxicol Environ Health A; 2009; 72(5):305-14. PubMed ID: 19184746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of naturally occurring acids on the surface properties of chrysotile asbestos.
    Holmes EP; Lavkulich LM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1445-52. PubMed ID: 25072777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of amphibole asbestos in chrysotile and other minerals.
    Addison J; Davies LS
    Ann Occup Hyg; 1990 Apr; 34(2):159-75. PubMed ID: 2169219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral phases and some reexamined characteristics of the International Union Against Cancer standard asbestos samples.
    Kohyama N; Shinohara Y; Suzuki Y
    Am J Ind Med; 1996 Nov; 30(5):515-28. PubMed ID: 8909601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 1: Identification and characterization.
    Groppo C; Tomatis M; Turci F; Gazzano E; Ghigo D; Compagnoni R; Fubini B
    J Toxicol Environ Health A; 2005 Jan; 68(1):1-19. PubMed ID: 15739801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphibole fibres in Chinese chrysotile asbestos.
    Tossavainen A; Kotilainen M; Takahashi K; Pan G; Vanhala E
    Ann Occup Hyg; 2001 Mar; 45(2):145-52. PubMed ID: 11182428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asbestiform minerals in ophiolitic rocks of Calabria (southern Italy).
    Campopiano A; Olori A; Spadafora A; Rosaria Bruno M; Angelosanto F; Iannò A; Casciardi S; Giardino R; Conte M; Oranges T; Iavicoli S
    Int J Environ Health Res; 2018 Apr; 28(2):134-146. PubMed ID: 29564927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The health effects of chrysotile: current perspective based upon recent data.
    Bernstein DM; Hoskins JA
    Regul Toxicol Pharmacol; 2006 Aug; 45(3):252-64. PubMed ID: 16814911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound.
    Turci F; Tomatis M; Mantegna S; Cravotto G; Fubini B
    Ultrason Sonochem; 2008 Apr; 15(4):420-427. PubMed ID: 17931951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodologies for determining the sources, characteristics, distribution, and abundance of asbestiform and nonasbestiform amphibole and serpentine in ambient air and water.
    Wylie AG; Candela PA
    J Toxicol Environ Health B Crit Rev; 2015; 18(1):1-42. PubMed ID: 25825806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():49-73. PubMed ID: 18686078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres.
    Turci F; Tomatis M; Mantegna S; Cravotto G; Fubini B
    J Environ Monit; 2007 Oct; 9(10):1064-6. PubMed ID: 17909639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siderophore-mediated iron removal from chrysotile: Implications for asbestos toxicity reduction and bioremediation.
    Mohanty SK; Gonneau C; Salamatipour A; Pietrofesa RA; Casper B; Christofidou-Solomidou M; Willenbring JK
    J Hazard Mater; 2018 Jan; 341():290-296. PubMed ID: 28797944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics.
    Harper M; Lee EG; Doorn SS; Hammond O
    J Occup Environ Hyg; 2008 Dec; 5(12):761-70. PubMed ID: 18828048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New detoxification processes for asbestos fibers in the environment.
    Turci F; Colonna M; Tomatis M; Mantegna S; Cravotto G; Fubini B
    J Toxicol Environ Health A; 2010; 73(5):368-77. PubMed ID: 20155579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of serpentine polymorphs in investigations of natural occurrences of asbestos.
    Wagner J
    Environ Sci Process Impacts; 2015 May; 17(5):985-96. PubMed ID: 25942071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The health risk of chrysotile asbestos.
    Bernstein DM
    Curr Opin Pulm Med; 2014 Jul; 20(4):366-70. PubMed ID: 24811832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments.
    Gamble JF; Gibbs GW
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S154-86. PubMed ID: 18396365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the presence of asbestos in cosmetic talcum products.
    Pierce JS; Riordan AS; Miller EW; Gaffney SH; Hollins DM
    Inhal Toxicol; 2017 Aug; 29(10):443-456. PubMed ID: 29124998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.