These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24521667)

  • 21. Heterogeneous epigenetic regulation of HACE1 in Burkitt- Lymphoma-derived cells.
    Bouzelfen A; Kora H; Alcantara M; Bertrand P; Latouche JB; Jardin F
    Leuk Res; 2017 Sep; 60():53-57. PubMed ID: 28651105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human genes with CpG island promoters have a distinct transcription-associated chromatin organization.
    Vavouri T; Lehner B
    Genome Biol; 2012 Nov; 13(11):R110. PubMed ID: 23186133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct ChIP-bisulfite sequencing reveals a role of H3K27me3 mediating aberrant hypermethylation of promoter CpG islands in cancer cells.
    Gao F; Ji G; Gao Z; Han X; Ye M; Yuan Z; Luo H; Huang X; Natarajan K; Wang J; Yang H; Zhang X
    Genomics; 2014; 103(2-3):204-10. PubMed ID: 24407023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation.
    Hughes AL; Kelley JR; Klose RJ
    Biochim Biophys Acta Gene Regul Mech; 2020 Aug; 1863(8):194567. PubMed ID: 32360393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression.
    Woellmer A; Arteaga-Salas JM; Hammerschmidt W
    PLoS Pathog; 2012 Sep; 8(9):e1002902. PubMed ID: 22969425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by methyl-CpG binding proteins and histone modifications.
    Müller I; Wischnewski F; Pantel K; Schwarzenbach H
    BMC Cancer; 2010 Jun; 10():297. PubMed ID: 20565761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.
    Han H; Cortez CC; Yang X; Nichols PW; Jones PA; Liang G
    Hum Mol Genet; 2011 Nov; 20(22):4299-310. PubMed ID: 21835883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic regulation of epigenomic landscapes during hematopoiesis.
    Abraham BJ; Cui K; Tang Q; Zhao K
    BMC Genomics; 2013 Mar; 14():193. PubMed ID: 23510235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining.
    Park SH; Lee SM; Kim YJ; Kim S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs.
    Luu PL; Schöler HR; Araúzo-Bravo MJ
    Genome Res; 2013 Dec; 23(12):2013-29. PubMed ID: 24149073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci.
    Sati S; Ghosh S; Jain V; Scaria V; Sengupta S
    Nucleic Acids Res; 2012 Nov; 40(20):10018-31. PubMed ID: 22923516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands.
    Takeshima H; Yamashita S; Shimazu T; Niwa T; Ushijima T
    Genome Res; 2009 Nov; 19(11):1974-82. PubMed ID: 19652013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Location-specific epigenetic regulation of the metallothionein 3 gene in esophageal adenocarcinomas.
    Peng D; Hu TL; Jiang A; Washington MK; Moskaluk CA; Schneider-Stock R; El-Rifai W
    PLoS One; 2011; 6(7):e22009. PubMed ID: 21818286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regional activation of the cancer genome by long-range epigenetic remodeling.
    Bert SA; Robinson MD; Strbenac D; Statham AL; Song JZ; Hulf T; Sutherland RL; Coolen MW; Stirzaker C; Clark SJ
    Cancer Cell; 2013 Jan; 23(1):9-22. PubMed ID: 23245995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter.
    Ladopoulos V; Hofemeister H; Hoogenkamp M; Riggs AD; Stewart AF; Bonifer C
    Mol Cell Biol; 2013 Apr; 33(7):1383-93. PubMed ID: 23358417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning.
    Hinshelwood RA; Melki JR; Huschtscha LI; Paul C; Song JZ; Stirzaker C; Reddel RR; Clark SJ
    Hum Mol Genet; 2009 Aug; 18(16):3098-109. PubMed ID: 19477956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genes Predisposed to DNA Hypermethylation during Acquired Resistance to Chemotherapy Are Identified in Ovarian Tumors by Bivalent Chromatin Domains at Initial Diagnosis.
    Curry E; Zeller C; Masrour N; Patten DK; Gallon J; Wilhelm-Benartzi CS; Ghaem-Maghami S; Bowtell DD; Brown R
    Cancer Res; 2018 Mar; 78(6):1383-1391. PubMed ID: 29339543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer.
    Yan PS; Shi H; Rahmatpanah F; Hsiau TH; Hsiau AH; Leu YW; Liu JC; Huang TH
    Cancer Res; 2003 Oct; 63(19):6178-86. PubMed ID: 14559801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
    Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC
    Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth.
    Chow MZ; Geng L; Kong CW; Keung W; Fung JC; Boheler KR; Li RA
    Stem Cells Dev; 2013 Oct; 22(19):2678-90. PubMed ID: 23656529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.