These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24521872)

  • 1. Impact of humidity on functionality of on-paper printed electronics.
    Bollström R; Pettersson F; Dolietis P; Preston J; Osterbacka R; Toivakka M
    Nanotechnology; 2014 Mar; 25(9):094003. PubMed ID: 24521872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques.
    Genina N; Fors D; Vakili H; Ihalainen P; Pohjala L; Ehlers H; Kassamakov I; Haeggström E; Vuorela P; Peltonen J; Sandler N
    Eur J Pharm Sci; 2012 Oct; 47(3):615-23. PubMed ID: 22902482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.
    Kim C; Nogi M; Suganuma K; Yamato Y
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2168-73. PubMed ID: 22452572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic performance of printed PEDOT:PSS lines correlated to the physical and chemical properties of coated inkjet papers.
    Forsberg V; Mašlík J; Norgren M
    RSC Adv; 2019 Jul; 9(41):23925-23938. PubMed ID: 35530632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.
    Vaithilingam J; Simonelli M; Saleh E; Senin N; Wildman RD; Hague RJ; Leach RK; Tuck CJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6560-6570. PubMed ID: 28094997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of Paper-Based Substrates for Printed Electronics.
    Jansson E; Lyytikäinen J; Tanninen P; Eiroma K; Leminen V; Immonen K; Hakola L
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high resolution patterning using intense pulsed light treatment.
    Gokhale P; Mitra D; Sowade E; Mitra KY; Gomes HL; Ramon E; Al-Hamry A; Kanoun O; Baumann RR
    Nanotechnology; 2017 Dec; 28(49):495301. PubMed ID: 28994394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-printed zinc tin oxide thin-film transistor.
    Kim D; Jeong Y; Song K; Park SK; Cao G; Moon J
    Langmuir; 2009 Sep; 25(18):11149-54. PubMed ID: 19735156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.
    Vaithilingam J; Saleh E; Wildman RD; Hague RJM; Tuck CJ
    Sci Rep; 2018 Jun; 8(1):9030. PubMed ID: 29899352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics.
    Li Y; Wu Y; Ong BS
    J Am Chem Soc; 2005 Mar; 127(10):3266-7. PubMed ID: 15755129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors.
    Gaspar C; Olkkonen J; Passoja S; Smolander M
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28640182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate.
    Jeong S; Song HC; Lee WW; Lee SS; Choi Y; Son W; Kim ED; Paik CH; Oh SH; Ryu BH
    Langmuir; 2011 Mar; 27(6):3144-9. PubMed ID: 21338069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.
    Li CY; Liao YC
    ACS Appl Mater Interfaces; 2016 May; 8(18):11868-74. PubMed ID: 27082455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. R2R-printed inverted OPV modules--towards arbitrary patterned designs.
    Välimäki M; Apilo P; Po R; Jansson E; Bernardi A; Ylikunnari M; Vilkman M; Corso G; Puustinen J; Tuominen J; Hast J
    Nanoscale; 2015 Jun; 7(21):9570-80. PubMed ID: 25951787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of different substrates for inkjet printing of rasagiline mesylate.
    Genina N; Janßen EM; Breitenbach A; Breitkreutz J; Sandler N
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1075-83. PubMed ID: 23563101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance and penetration of laccase and ABTS inks on various printing substrates.
    Matilainen K; Hämäläinen T; Savolainen A; Sipiläinen-Malm T; Peltonen J; Erho T; Smolander M
    Colloids Surf B Biointerfaces; 2012 Feb; 90():119-28. PubMed ID: 22051108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile method for fabricating flexible substrates with embedded, printed silver lines.
    Mahajan A; Francis LF; Frisbie CD
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1306-12. PubMed ID: 24320696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profile control of inkjet printed silver electrodes and their application to organic transistors.
    Fukuda K; Sekine T; Kumaki D; Tokito S
    ACS Appl Mater Interfaces; 2013 May; 5(9):3916-20. PubMed ID: 23547936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.