These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24521927)

  • 1. Nanoparticle composites for printed electronics.
    Männl U; van den Berg C; Magunje B; Härting M; Britton DT; Jones S; van Staden MJ; Scriba MR
    Nanotechnology; 2014 Mar; 25(9):094004. PubMed ID: 24521927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks.
    Sanchez-Duenas L; Gomez E; Larrañaga M; Blanco M; Goitandia AM; Aranzabe E; Vilas-Vilela JL
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.
    Agina EV; Sizov AS; Yablokov MY; Borshchev OV; Bessonov AA; Kirikova MN; Bailey MJ; Ponomarenko SA
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11755-64. PubMed ID: 25984650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring metal oxide nanoparticle dispersions for inkjet printing.
    Gebauer JS; Mackert V; Ognjanović S; Winterer M
    J Colloid Interface Sci; 2018 Sep; 526():400-409. PubMed ID: 29758409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ink-jetable patterning of metal-catalysts for regioselective growth of nanowires.
    Zopes D; von Hagen R; Müller R; Fiz R; Mathur S
    Nanoscale; 2010 Oct; 2(10):2091-5. PubMed ID: 20683541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid nanomaterial inks for printed resistive temperature sensors with tunable properties to maximize sensitivity.
    Tursunniyaz M; Agarwal V; Meredith A; Andrews J
    Nanoscale; 2022 Dec; 15(1):162-170. PubMed ID: 36478149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.
    Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y
    Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion mechanisms of nanoparticle silver to substrate materials: identification.
    Joo S; Baldwin DF
    Nanotechnology; 2010 Feb; 21(5):055204. PubMed ID: 20023320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils.
    Hyun WJ; Lim S; Ahn BY; Lewis JA; Frisbie CD; Francis LF
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12619-24. PubMed ID: 26035226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hansen Solubility Parameter Analysis on Dispersion of Oleylamine-Capped Silver Nanoinks and their Sintered Film Morphology.
    Saita S; Takeda SI; Kawasaki H
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive nanomaterials for printed electronics.
    Kamyshny A; Magdassi S
    Small; 2014 Sep; 10(17):3515-35. PubMed ID: 25340186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.