These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 2452214)

  • 81. Parathyroid hormone-related protein production by normal human keratinocytes in vitro.
    Werkmeister JR; Merryman JI; McCauley LK; Horton JE; Capen CC; Rosol TJ
    Exp Cell Res; 1993 Sep; 208(1):68-74. PubMed ID: 8359229
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Monospecific monoclonal antibodies to keratin 1 carboxy terminal (synthetic peptide) and to keratin 10 as markers of epidermal differentiation.
    Leigh IM; Purkis PE; Whitehead P; Lane EB
    Br J Dermatol; 1993 Aug; 129(2):110-9. PubMed ID: 7544603
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The dose effect of human bone marrow-derived mesenchymal stem cells on epidermal development in organotypic co-culture.
    Laco F; Kun M; Weber HJ; Ramakrishna S; Chan CK
    J Dermatol Sci; 2009 Sep; 55(3):150-60. PubMed ID: 19564098
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Isolation and growth of adult human epidermal keratinocytes in cell culture. 1978.
    Liu SC; Karasek M
    J Invest Dermatol; 1989 Apr; 92(4 Suppl):164S; discussion 165S. PubMed ID: 2467952
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Oxysterol stimulation of epidermal differentiation is mediated by liver X receptor-beta in murine epidermis.
    Kömüves LG; Schmuth M; Fowler AJ; Elias PM; Hanley K; Man MQ; Moser AH; Lobaccaro JM; Williams ML; Mangelsdorf DJ; Feingold KR
    J Invest Dermatol; 2002 Jan; 118(1):25-34. PubMed ID: 11851872
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Proliferation in murine epidermis after minor mechanical stimulation. Part 1. Sustained increase in keratinocyte production and migration.
    Potten CS; Barthel D; Li YQ; Ohlrich R; Matthé B; Loeffler M
    Cell Prolif; 2000 Aug; 33(4):231-46. PubMed ID: 11041204
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Experimental suprabasal bulla formation in organ cultured human skin with low calcium medium.
    Hashimoto T
    J Invest Dermatol; 1988 Apr; 90(4):501-4. PubMed ID: 2450931
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Multiparameter flow cytometric characterization of epidermal cell suspensions prepared from normal and hyperproliferative human skin using an optimized thermolysin-trypsin protocol.
    Glade CP; Seegers BA; Meulen EF; van Hooijdonk CA; van Erp PE; van de Kerkhof PC
    Arch Dermatol Res; 1996 Apr; 288(4):203-10. PubMed ID: 8967793
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Optimised growth of human epidermal cells in vitro without the use of a feeder layer or collagen substrate.
    Thompson CH; Rose BR; Cossart YE
    Aust J Exp Biol Med Sci; 1985 Apr; 63 ( Pt 2)():147-56. PubMed ID: 3899076
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Secretion of apolipoprotein E by basal cells in cultures of epidermal keratinocytes.
    Barra RM; Fenjves ES; Taichman LB
    J Invest Dermatol; 1994 Jan; 102(1):61-6. PubMed ID: 8288912
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The morphology of the denuded epidermal basal cell layer of the hairless mouse after different preparation methods. A scanning and transmission electron microscopical study.
    Glasø M; Håskjold E
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1989; 57(3):181-94. PubMed ID: 2570485
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Quantitative digital image analysis applied to demonstrate the stratified distribution of involucrin in organ cultured human skin.
    Kivinen PK; Hyttinen M; Harvima RJ; Naukkarinen A; Horsmanheimo M; Harvima IT
    Arch Dermatol Res; 1999 Apr; 291(4):217-23. PubMed ID: 10335919
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Density-dependent variations in the lipid content and metabolism of cultured human keratinocytes.
    Williams ML; Rutherford SL; Ponec M; Hincenbergs M; Placzek DR; Elias PM
    J Invest Dermatol; 1988 Jul; 91(1):86-91. PubMed ID: 2455004
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Keratinocyte protein expression in rapidly regenerating epidermis following laser-induced thermal injury.
    Smoller BR; Dover JS; Hsu A
    Lasers Surg Med; 1989; 9(3):264-70. PubMed ID: 2471909
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Temporal variation in cellular proliferation during recornification of mouse tail skin.
    Wilson RP; McLaughlin PJ; Lang CM; Zagon IS
    Cell Prolif; 1998; 31(5-6):191-201. PubMed ID: 9925987
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Involucrin in the epidermal cells of subprimates.
    Simon M; Green H
    J Invest Dermatol; 1989 May; 92(5):721-4. PubMed ID: 2469735
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Keratinocyte cultures: an experimental model for studying how proliferation and terminal differentiation are co-ordinated in the epidermis.
    Watt FM
    J Cell Sci; 1988 Aug; 90 ( Pt 4)():525-9. PubMed ID: 2473085
    [No Abstract]   [Full Text] [Related]  

  • 98. Synthesis of keratin proteins during maturation of cultured human keratinocytes.
    Taichman LB; Prokop CA
    J Invest Dermatol; 1982 Jun; 78(6):464-7. PubMed ID: 6177798
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A reductionist approach to determine the effect of cell-cell contact on human epidermal stem cell differentiation.
    Louis B; Tewary M; Bremer AW; Philippeos C; Negri VA; Zijl S; Gartner ZJ; Schaffer DV; Watt FM
    Acta Biomater; 2022 Sep; 150():265-276. PubMed ID: 35926780
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Isolation and characterization of a spontaneously arising long-lived line of human keratinocytes (NM 1).
    Baden HP; Kubilus J; Kvedar JC; Steinberg ML; Wolman SR
    In Vitro Cell Dev Biol; 1987 Mar; 23(3):205-13. PubMed ID: 2435701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.