These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24522254)

  • 1. Zwitteration of dextran: a facile route to integrate antifouling, switchability and optical transparency into natural polymers.
    Cao B; Li L; Wu H; Tang Q; Sun B; Dong H; Zhe J; Cheng G
    Chem Commun (Camb); 2014 Mar; 50(24):3234-7. PubMed ID: 24522254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in Zwitterionic Sulfobetaine and Carboxybetaine Dextran-Based Hydrogels.
    Chen X; Qiu X; Hou M; Wu X; Dong Y; Ma Y; Yang L; Wei Y
    Langmuir; 2019 Feb; 35(5):1475-1482. PubMed ID: 30142980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zwitterionic Polyurethanes with Tunable Surface and Bulk Properties.
    Wang H; Hu Y; Lynch D; Young M; Li S; Cong H; Xu FJ; Cheng G
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37609-37617. PubMed ID: 30335927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
    Li W; Liu Q; Liu L
    J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer.
    Cao B; Li L; Tang Q; Cheng G
    Biomaterials; 2013 Oct; 34(31):7592-600. PubMed ID: 23871130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of elimination on antifouling and pH-responsive properties of carboxybetaine materials.
    Yu WN; Manik DHN; Huang CJ; Chau LK
    Chem Commun (Camb); 2017 Aug; 53(65):9143-9146. PubMed ID: 28762398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films.
    Yang R; Goktekin E; Wang M; Gleason KK
    J Biomater Sci Polym Ed; 2014; 25(14-15):1687-702. PubMed ID: 25188220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divalent cation-mediated polysaccharide interactions with zwitterionic surfaces.
    Mi L; Giarmarco MM; Shao Q; Jiang S
    Biomaterials; 2012 Mar; 33(7):2001-6. PubMed ID: 22177617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties.
    Yeh SB; Chen CS; Chen WY; Huang CJ
    Langmuir; 2014 Sep; 30(38):11386-93. PubMed ID: 25185951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generic top-functionalization of patterned antifouling zwitterionic polymers on indium tin oxide.
    Li Y; Giesbers M; Gerth M; Zuilhof H
    Langmuir; 2012 Aug; 28(34):12509-17. PubMed ID: 22888834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.
    Zhao C; Zhao J; Li X; Wu J; Chen S; Chen Q; Wang Q; Gong X; Li L; Zheng J
    Biomaterials; 2013 Jul; 34(20):4714-24. PubMed ID: 23562049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyampholyte polymers as a versatile zwitterionic biomaterial platform.
    Bernards M; He Y
    J Biomater Sci Polym Ed; 2014; 25(14-15):1479-88. PubMed ID: 25050648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances of zwitterionic carboxybetaine materials and their derivatives.
    Cao B; Tang Q; Cheng G
    J Biomater Sci Polym Ed; 2014; 25(14-15):1502-13. PubMed ID: 24953966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform.
    Cao B; Tang Q; Li L; Lee CJ; Wang H; Zhang Y; Castaneda H; Cheng G
    Chem Sci; 2015 Jan; 6(1):782-788. PubMed ID: 28936320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two amino acid-based superlow fouling polymers: poly(lysine methacrylamide) and poly(ornithine methacrylamide).
    Liu Q; Li W; Singh A; Cheng G; Liu L
    Acta Biomater; 2014 Jul; 10(7):2956-64. PubMed ID: 24613545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption.
    Schlenoff JB
    Langmuir; 2014 Aug; 30(32):9625-36. PubMed ID: 24754399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications.
    Kim S; Gim T; Kang SM
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6412-6. PubMed ID: 25756241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance?
    Quintana R; JaƄczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ
    Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014.
    Qian PY; Li Z; Xu Y; Li Y; Fusetani N
    Biofouling; 2015; 31(1):101-22. PubMed ID: 25622074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.