BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 24522270)

  • 1. Chromatin-regulating proteins as targets for cancer therapy.
    Oike T; Ogiwara H; Amornwichet N; Nakano T; Kohno T
    J Radiat Res; 2014 Jul; 55(4):613-28. PubMed ID: 24522270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors.
    Ogiwara H; Ui A; Otsuka A; Satoh H; Yokomi I; Nakajima S; Yasui A; Yokota J; Kohno T
    Oncogene; 2011 May; 30(18):2135-46. PubMed ID: 21217779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetically maintained SW13+ and SW13- subtypes have different oncogenic potential and convert with HDAC1 inhibition.
    Davis MR; Daggett JJ; Pascual AS; Lam JM; Leyva KJ; Cooper KE; Hull EE
    BMC Cancer; 2016 May; 16():316. PubMed ID: 27188282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic lethal therapy based on targeting the vulnerability of SWI/SNF chromatin remodeling complex-deficient cancers.
    Sasaki M; Ogiwara H
    Cancer Sci; 2020 Mar; 111(3):774-782. PubMed ID: 31955490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small Molecular Inhibitors Targeting Chromatin Regulating Proteins for Cancer.
    Luan J; Chu Z; Chandra J; Zhang P
    Curr Protein Pept Sci; 2016; 17(5):455-62. PubMed ID: 26796303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition.
    Flatmark K; Nome RV; Folkvord S; Bratland A; Rasmussen H; Ellefsen MS; Fodstad Ø; Ree AH
    Radiat Oncol; 2006 Aug; 1():25. PubMed ID: 16887021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone deacetylation as a target for radiosensitization.
    Cerna D; Camphausen K; Tofilon PJ
    Curr Top Dev Biol; 2006; 73():173-204. PubMed ID: 16782459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of BRM Sensitizes
    Zernickel E; Sak A; Riaz A; Klein D; Groneberg M; Stuschke M
    Mol Cancer Ther; 2019 Mar; 18(3):656-666. PubMed ID: 30478150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application.
    Santini V; Gozzini A; Ferrari G
    Curr Drug Metab; 2007 May; 8(4):383-93. PubMed ID: 17504226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Garcinol, a histone acetyltransferase inhibitor, radiosensitizes cancer cells by inhibiting non-homologous end joining.
    Oike T; Ogiwara H; Torikai K; Nakano T; Yokota J; Kohno T
    Int J Radiat Oncol Biol Phys; 2012 Nov; 84(3):815-21. PubMed ID: 22417805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone acetylation modifiers in the pathogenesis of malignant disease.
    Mahlknecht U; Hoelzer D
    Mol Med; 2000 Aug; 6(8):623-44. PubMed ID: 11055583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism.
    Morel D; Almouzni G; Soria JC; Postel-Vinay S
    Ann Oncol; 2017 Feb; 28(2):254-269. PubMed ID: 28426098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BRG1, the ATPase subunit of SWI/SNF chromatin remodeling complex, interacts with HDAC2 to modulate telomerase expression in human cancer cells.
    Wu S; Ge Y; Huang L; Liu H; Xue Y; Zhao Y
    Cell Cycle; 2014; 13(18):2869-78. PubMed ID: 25486475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of histone deacetylation: a strategy for tumor radiosensitization.
    Camphausen K; Tofilon PJ
    J Clin Oncol; 2007 Sep; 25(26):4051-6. PubMed ID: 17827453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex.
    Wang X; Sansam CG; Thom CS; Metzger D; Evans JA; Nguyen PT; Roberts CW
    Cancer Res; 2009 Oct; 69(20):8094-101. PubMed ID: 19789351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone acetylation and the cell-cycle in cancer.
    Wang C; Fu M; Mani S; Wadler S; Senderowicz AM; Pestell RG
    Front Biosci; 2001 Apr; 6():D610-29. PubMed ID: 11282573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor?
    Jancewicz I; Siedlecki JA; Sarnowski TJ; Sarnowska E
    Epigenetics Chromatin; 2019 Nov; 12(1):68. PubMed ID: 31722744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation.
    Hutt DM; Roth DM; Marchal C; Bouchecareilh M
    Methods Mol Biol; 2017; 1510():77-91. PubMed ID: 27761814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
    Wang Z; Zang C; Cui K; Schones DE; Barski A; Peng W; Zhao K
    Cell; 2009 Sep; 138(5):1019-31. PubMed ID: 19698979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy.
    Ramaiah MJ; Tangutur AD; Manyam RR
    Life Sci; 2021 Jul; 277():119504. PubMed ID: 33872660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.